Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Sončni orbiter - dr. Richard Marsden, ESA

10.11.2011


Sonce je gibalo, ki poganja Osončje, v katerem živimo. Je tudi edina zvezda, ki jo lahko podrobno preučujemo.

Močni tokovi delcev in rentgenskega sevanja, ki prihajajo od tam, letijo mimo Zemlje in vplivajo na njeno ozračje, povzročajo polarne sije, motijo prenos električne energije in – zelo redko – celo obsevajo letalske potnike.

Torej so poleg znanstvenih tudi vsakodnevni razlogi, zakaj si želimo Sonce bolje razumeti.

Dr. Richard Marsden ima dolgoletne izkušnje z vesoljskimi misijami, ki so preučevale naše Sonce. Vodil je misijo Ulysses Evropske vesoljske agencije, ki je izjemno veliko prispevala k našemu razumevanju Sonca. Pravzaprav je bilo to prvič, da smo Zemljani lahko videli polarna območja Sonca. Zemlja je namreč vedno nad Sončevim ekvatorjem, zato polarnih območij ni mogoče dobro videti. Misija Ulysses je bila velik uspeh. Leta 2008 je  v vesolju delovala že 18 let.

Take misije imajo na krovu veliko zapletene opreme, tudi računalnikov. Najbrž nihče ne bi niti pomislil, da bi isti osebni računalnik uporabljal dve desetletji. Če upoštevamo še težave zaradi neprijaznega vesoljskega okolja,  je izjemna zanesljivost računalnikov na krovih vesoljskih ladij pravzaprav majhen čudež.  Že dejstvo, da je skoraj dve desetletji delovala v grobem vesoljskem okolju, kaže, da je tehnologija, razvita za vesoljske polete, lahko uporabna tudi za gradnjo zapletenih sistemov na Zemlji, če seveda od njih pričakujemo več desetletij dolgo zanesljivo delovanje brez servisnih posegov.

Dr. Richard Marsden zdaj  pripravlja naslednjo dolgotrajno vesoljsko misijo. Je znanstveni direktor Sončevega orbiterja, ki ga je Evropske vesoljska agencija pravkar izbrala kot naslednjo vesoljsko misijo za študij Sonca.  Na Nizozemsko ga je poklical Matej Praprotnik:

Doktor Marsden, misija Sončni orbiter Evropske vesoljske agencije, ki poteka pod vašim vodstvom, bo poskušala najti odgovore z opazovanjem Sonca od tako blizu kot še nobeno vesoljsko plovilo. Približati se Soncu na četrtino dosedanje razdalje je težko in utegne biti tudi nevarno. Sonce tam seva 16-krat močneje, zato je instrumente težko zaščititi. Zakaj se hočete Soncu tako zelo približati in kako ga nameravate opazovati?
Sonce je motor, ki poganja Osončje, v katerem živimo. Je tudi edina zvezda, ki jo lahko podrobno preučujemo. Pomembno je, da izvemo čim več o procesih v njem. Do določene mere nam to uspeva s teleskopi na Zemlji in z instrumenti na satelitih nad Zemljo. Če pa hočemo resnično razumeti izvor tistega, kar prihaja s Sonca, se moramo viru čim bolj približati. Marsikatera podrobnost, ki bi jo radi preučili, se porazgubi. Tako je s Sončevim vetrom, atmosfero, ki se od Sonca širi navzven in gre mimo Zemlje. Podrobnosti se na poti izgubijo – tako kot pri Sončevem vetru.

Razumem. V preteklem stoletju Sonce še nikoli ni bilo tako mirno, kot je zadnja leta. Tako vedenje je dokaj nepričakovano. Kako se to sklada z načrti misije Sončnega orbiterja?
To je zelo dobro vprašanje. Zadnji Sončev minimum je trajal veliko dlje, kot je bilo pričakovano. Podatki s prejšnje misije Odisej so pokazali tudi, da je Sončev veter veliko šibkejši, kot je bil v prejšnjih obdobjih vesoljske dobe. To nam pove, da procesov v Soncu v resnici še ne poznamo. Očitno je Sončni orbiter misija v pravem trenutku. Zlasti ne razumemo, kaj povzroča magnetno polje na Soncu in zakaj se polje spreminja. To je namreč glavni motor vse Sončeve dejavnosti. S Sončnim orbiterjem bomo lahko prvič izmerili celotno magnetno polje od ekvatorja do tečajev. Tako bomo lahko razumeli podrobno delovanje dinama, ki poganja ta magnetizem.

Glede na skrajne razmere v vesolju je izjemna zanesljivost uporabljenih računalnikov pravi čudež. Kako to dosežete? Ali bi se strinjali, da naši domači računalniki niso tako zanesljivi zaradi nestabilne programske opreme, medtem ko bi njihova strojna oprema zdržala desetletja?
To je res. Elektronska oprema na satelitih mora biti zelo zanesljiva, saj tja ne moremo poslati serviserja, če se kaj pokvari. To pomeni, da moramo izbrati posebne elektronske sestavne dele, ki so primerni za uporabo v vesolju. Glavno pa je, da vse skrbno preizkusimo že na Zemlji v primerljivih razmerah, preden opremo pošljemo v vesolje. Tako se še pred izstrelitvijo satelita prepričamo, da smo preverili vse morebitne težave. Mogoče bo koga presenetilo, da je elektronska oprema, ki jo uporabljamo, manj izpopolnjena od tiste v najzmogljivejših domačih računalnikih. Tako poskrbimo za čim večjo zanesljivost.

Doktor Marsden, kakšna je prednost, da zdaj Sonce lahko opazujemo od zgoraj in od spodaj in ga ne gledamo več samo v trebuh? Prej ste omenili, da Sonca še ne poznamo dovolj dobro.
Sonce je trirazsežno telo, ki se vrti okoli svoje osi. To pomeni, da ni lepo simetrično. Če bi res radi vedeli, kako delujejo zvezde in kako deluje naše Sonce, ga moramo opazovati z vseh kotov. Za preučevanje Sončeve dejavnosti so najpomembnejša območja okoli obeh polov, ki ju z Zemlje ne vidimo. Zato moramo polarna območja opazovati z visoke zemljepisne širine. Menimo, da se tam dogaja marsikaj pomembnega, kar poganja magnetno polje. Pričakujemo, da bo na tem področju Sončni orbiter dosegel največji napredek.

Še zadnje vprašanje, doktor Marsden. Sončni orbiter je glavni prispevek Evropske vesoljske agencije k Mednarodni pobudi Življenje z zvezdo. Ali bi nam lahko na kratko opisali glavne cilje te pobude?
Preprosto povedano: s programom Življenje z zvezdo naj bi dosegli celovito razumevanje, kako so Sonce, Zemlja in tako imenovana heliosfera povezani med seboj v sistem, ter kako ta sistem vpliva na življenje in družbo na Zemlji. Z uporabo skupnih zmogljivosti vseh vesoljskih agencij na svetu se je tega raziskovanja mogoče lotiti najbolj učinkovito. Zato smo ga tudi poimenovali Mednarodna pobuda Življenje z zvezdo. Končni cilj je napovedovati tako imenovano sončno vreme, kot to počnemo za vreme na Zemlji.

Sončev orbiter bo po izstrelitvi leta 2017 ali 2018  deloval naslednjih sedem ali osem let. A kdo ve: če je misija Ulysses lahko zgled, bo življenjska doba Sončevega orbiterja morda mnogo daljša.


Frekvenca X

689 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Sončni orbiter - dr. Richard Marsden, ESA

10.11.2011


Sonce je gibalo, ki poganja Osončje, v katerem živimo. Je tudi edina zvezda, ki jo lahko podrobno preučujemo.

Močni tokovi delcev in rentgenskega sevanja, ki prihajajo od tam, letijo mimo Zemlje in vplivajo na njeno ozračje, povzročajo polarne sije, motijo prenos električne energije in – zelo redko – celo obsevajo letalske potnike.

Torej so poleg znanstvenih tudi vsakodnevni razlogi, zakaj si želimo Sonce bolje razumeti.

Dr. Richard Marsden ima dolgoletne izkušnje z vesoljskimi misijami, ki so preučevale naše Sonce. Vodil je misijo Ulysses Evropske vesoljske agencije, ki je izjemno veliko prispevala k našemu razumevanju Sonca. Pravzaprav je bilo to prvič, da smo Zemljani lahko videli polarna območja Sonca. Zemlja je namreč vedno nad Sončevim ekvatorjem, zato polarnih območij ni mogoče dobro videti. Misija Ulysses je bila velik uspeh. Leta 2008 je  v vesolju delovala že 18 let.

Take misije imajo na krovu veliko zapletene opreme, tudi računalnikov. Najbrž nihče ne bi niti pomislil, da bi isti osebni računalnik uporabljal dve desetletji. Če upoštevamo še težave zaradi neprijaznega vesoljskega okolja,  je izjemna zanesljivost računalnikov na krovih vesoljskih ladij pravzaprav majhen čudež.  Že dejstvo, da je skoraj dve desetletji delovala v grobem vesoljskem okolju, kaže, da je tehnologija, razvita za vesoljske polete, lahko uporabna tudi za gradnjo zapletenih sistemov na Zemlji, če seveda od njih pričakujemo več desetletij dolgo zanesljivo delovanje brez servisnih posegov.

Dr. Richard Marsden zdaj  pripravlja naslednjo dolgotrajno vesoljsko misijo. Je znanstveni direktor Sončevega orbiterja, ki ga je Evropske vesoljska agencija pravkar izbrala kot naslednjo vesoljsko misijo za študij Sonca.  Na Nizozemsko ga je poklical Matej Praprotnik:

Doktor Marsden, misija Sončni orbiter Evropske vesoljske agencije, ki poteka pod vašim vodstvom, bo poskušala najti odgovore z opazovanjem Sonca od tako blizu kot še nobeno vesoljsko plovilo. Približati se Soncu na četrtino dosedanje razdalje je težko in utegne biti tudi nevarno. Sonce tam seva 16-krat močneje, zato je instrumente težko zaščititi. Zakaj se hočete Soncu tako zelo približati in kako ga nameravate opazovati?
Sonce je motor, ki poganja Osončje, v katerem živimo. Je tudi edina zvezda, ki jo lahko podrobno preučujemo. Pomembno je, da izvemo čim več o procesih v njem. Do določene mere nam to uspeva s teleskopi na Zemlji in z instrumenti na satelitih nad Zemljo. Če pa hočemo resnično razumeti izvor tistega, kar prihaja s Sonca, se moramo viru čim bolj približati. Marsikatera podrobnost, ki bi jo radi preučili, se porazgubi. Tako je s Sončevim vetrom, atmosfero, ki se od Sonca širi navzven in gre mimo Zemlje. Podrobnosti se na poti izgubijo – tako kot pri Sončevem vetru.

Razumem. V preteklem stoletju Sonce še nikoli ni bilo tako mirno, kot je zadnja leta. Tako vedenje je dokaj nepričakovano. Kako se to sklada z načrti misije Sončnega orbiterja?
To je zelo dobro vprašanje. Zadnji Sončev minimum je trajal veliko dlje, kot je bilo pričakovano. Podatki s prejšnje misije Odisej so pokazali tudi, da je Sončev veter veliko šibkejši, kot je bil v prejšnjih obdobjih vesoljske dobe. To nam pove, da procesov v Soncu v resnici še ne poznamo. Očitno je Sončni orbiter misija v pravem trenutku. Zlasti ne razumemo, kaj povzroča magnetno polje na Soncu in zakaj se polje spreminja. To je namreč glavni motor vse Sončeve dejavnosti. S Sončnim orbiterjem bomo lahko prvič izmerili celotno magnetno polje od ekvatorja do tečajev. Tako bomo lahko razumeli podrobno delovanje dinama, ki poganja ta magnetizem.

Glede na skrajne razmere v vesolju je izjemna zanesljivost uporabljenih računalnikov pravi čudež. Kako to dosežete? Ali bi se strinjali, da naši domači računalniki niso tako zanesljivi zaradi nestabilne programske opreme, medtem ko bi njihova strojna oprema zdržala desetletja?
To je res. Elektronska oprema na satelitih mora biti zelo zanesljiva, saj tja ne moremo poslati serviserja, če se kaj pokvari. To pomeni, da moramo izbrati posebne elektronske sestavne dele, ki so primerni za uporabo v vesolju. Glavno pa je, da vse skrbno preizkusimo že na Zemlji v primerljivih razmerah, preden opremo pošljemo v vesolje. Tako se še pred izstrelitvijo satelita prepričamo, da smo preverili vse morebitne težave. Mogoče bo koga presenetilo, da je elektronska oprema, ki jo uporabljamo, manj izpopolnjena od tiste v najzmogljivejših domačih računalnikih. Tako poskrbimo za čim večjo zanesljivost.

Doktor Marsden, kakšna je prednost, da zdaj Sonce lahko opazujemo od zgoraj in od spodaj in ga ne gledamo več samo v trebuh? Prej ste omenili, da Sonca še ne poznamo dovolj dobro.
Sonce je trirazsežno telo, ki se vrti okoli svoje osi. To pomeni, da ni lepo simetrično. Če bi res radi vedeli, kako delujejo zvezde in kako deluje naše Sonce, ga moramo opazovati z vseh kotov. Za preučevanje Sončeve dejavnosti so najpomembnejša območja okoli obeh polov, ki ju z Zemlje ne vidimo. Zato moramo polarna območja opazovati z visoke zemljepisne širine. Menimo, da se tam dogaja marsikaj pomembnega, kar poganja magnetno polje. Pričakujemo, da bo na tem področju Sončni orbiter dosegel največji napredek.

Še zadnje vprašanje, doktor Marsden. Sončni orbiter je glavni prispevek Evropske vesoljske agencije k Mednarodni pobudi Življenje z zvezdo. Ali bi nam lahko na kratko opisali glavne cilje te pobude?
Preprosto povedano: s programom Življenje z zvezdo naj bi dosegli celovito razumevanje, kako so Sonce, Zemlja in tako imenovana heliosfera povezani med seboj v sistem, ter kako ta sistem vpliva na življenje in družbo na Zemlji. Z uporabo skupnih zmogljivosti vseh vesoljskih agencij na svetu se je tega raziskovanja mogoče lotiti najbolj učinkovito. Zato smo ga tudi poimenovali Mednarodna pobuda Življenje z zvezdo. Končni cilj je napovedovati tako imenovano sončno vreme, kot to počnemo za vreme na Zemlji.

Sončev orbiter bo po izstrelitvi leta 2017 ali 2018  deloval naslednjih sedem ali osem let. A kdo ve: če je misija Ulysses lahko zgled, bo življenjska doba Sončevega orbiterja morda mnogo daljša.


17.05.2018

Bombe

V Frekvenci X raziskujemo bombe: od njihove rabe v gospodarstvu do ostalin iz obeh svetovnih in vojne za slovensko osamosvojitev, ki jih pri nas ni malo. Državna enota za varnost pred neeksplodiranimi ubojnimi sredstvi, ki uničuje potencialno nevarne najdbe sprehajalcev po slovenskih gozdovih, ima glede na letno povprečje več kot eno intervencijo na dan. Pogovarjali smo se s predstavnikom podjetja, ki se ukvarja z miniranjem v kamnolomih, rudnikih, na gradbiščih in z rušenjem visokih zgradb, s strokovnjaki z omenjene enote za odstranjevanje povojnih ostankov in z upokojenim specialcem slovenske policije, ki ga pokličejo na pomoč, ko se znajdejo v negotovosti; na primer pri lanskem primeru letalske bombe v Vurberku. Britanska raziskovalka psihosocialnih in kulturnih vplivov rabe jedrskega orožja z Univerze v Southamptonu je razložila, kako se je v zadnjih letih v nekaterih državah spremenil odnos javnosti do atomskih bomb in zakaj je pomembno, da te v javnem diskurzu ostanejo tabu.


10.05.2018

Nevroznanost na sprehodu po galeriji

Nevroznanost se tokrat podaja med umetnost, obiskala bo namreč galerijo. Pred časom se je iz nevroznanstvenega preučevanja umetnosti rodila nova veda, ki ji danes rečemo nevroestetika. Temelje zanjo so pred skoraj dvajsetimi leti postavili nevroznanstveniki Semir Zeki na eni strani, Vilayanur Ramachandran in William Hirstein na drugi - izdali so namreč kontroverzna članka, v katerih nekoliko domišljavo trdijo, da lahko nekaj tako kompleksnega, kot je umetnost, razložijo ob pomoči nevroznanosti. Lahko torej razmišljamo v smeri, da imamo v možganih center za umetnost, kot trdi Semir Zeki, ali je zaznavanje in občutenje umetnin odvisno od povezovanja različnih centrov v našem zaznavnem sistemu? Je za razlago umetnosti dovolj, če poznamo osem zakonitosti globoke strukture možganov, ki si jih je med sprehodom brez poznavanja umetnostne zgodovine zamislil Ramachardan? Kakšni procesi se dogajajo v možganih, ko opazujemo določene umetnine, denimo portret Mice Čop, rojene Kessler, slikarke Ivane Kobilca, ali pa pokrajino, recimo van Goghovo Zvezdno noč? Je naše dojemanje umetnosti povezano z našim humanističnim, izkustvenim predznanjem in koliko danes še velja Braqueova izjava, da umetnost vznemirja, znanost pomirja. Foto: Narodna galerija


03.05.2018

Epoha iz futuristične japonske naprave

Tsukuba je japonsko raziskovalno-znanstveno središče, 50 kilometrov oddaljeno od Tokia. Konec aprila so v tamkajšnjem trkalniku SuperKEKB, 11 metrov pod zemljo, zaznali prve trke pospešenih delcev, elektronov in pozitronov. Med delovanjem s polno močjo bodo žarki elektronov in pozitronov trkali in pri tem proizvajali veliko število novih delcev. Delce bodo zaznavali z detektorjem Belle II, ki je po gostoti trkajočih žarkov najzmogljivejši detektor na svetu. Z natančnimi meritvami bodo znanstveniki odkrivali znake “nove fizike”, torej eksperimentalna dejstva, ki se ne ujemajo s trenutno teorijo, Standardnim modelom. Gre za prvi nov trkalnik, ki je začel delovati po tistem v Cernu pred desetimi leti. SuperKEKB je futuristična naprava, ki jo je zasnovala in izdelala ekipa japonskih fizikov, pri projektu pa imajo zelo pomembno vlogo tudi slovenski znanstveniki. Kako konkretno sodelujejo naši strokovnjaki, v čem se SuperKEKB razlikuje od trkalnika LHC v Cernu in fuzijskega reaktorja ITER v Franciji? Kaj prinaša “epohalni trenutek na Japonskem” za naše razumevanja sveta in vesolja, se pogovarjamo s prof. dr. Petrom Križanom, ki skrbi za koordinacijo priprave celotnega detektorja.


26.04.2018

Misija Gaia: kot bi merili evrski kovanec na Luni

Misija Gaia Evropske vesoljskega agencije meri velikost naše Galaksije in vsega vesolja. V dobrih štirih letih delovanja je natančno izmerila razdalje do milijarde njenih zvezd. Osupljiva je njena natančnost, saj je v prenesenem pomenu zmožna izmeriti celo velikost evrskega kovanca na Luni. Gre za izjemen tehnološki izziv in veliko spoznavno moč o razsežnostih vesolja. Če bi naše Sonce pomanjšali na velikost pomaranče, bi bila v tem merilu najbližja zvezda za Soncem mandarina na Kanarskih otokih, Zemlja pa milimetrsko zrno petnajst metrov od Sonca Misija Gaia zdaj velja za največji katalog astronomskih meritev, ki bo pokazal, kako je nastala naša Galaksija. Bližje uresničitvi časovnega stroja še nismo bili. Sogovornika: -Dr. Anthony Brown, vodja podatkovnega konzorcija misije Gaia -Prof. Tomaž Zwitter, astrofizik in vodja slovenskih sodelavcev misije Gaia


18.04.2018

Slovenska vizionarka biološkega računalništva

Naše celice imajo veliko zanimivih lastnosti, delujejo lahko kot biološke naprave in imajo spomin. Povezujejo se tudi v logična vezja in lahko delujejo celo kot računalniki. Raziskovalno polje dr. Tine Lebar je sintezna biologija, ki celice spreminja tako, da dobijo neke povsem nove lastnosti, ki v naravi ne obstajajo. Raziskave potekajo tudi na celicah sesalcev, ki jih spreminjajo tako, da so zmožne izvajati logične funkcije. S posegi v celične sisteme je mogoče ustvarili nova kompleksna genska omrežja, ki bi bila uporabna za različne aplikacije, tudi v medicini: “Celice spreminjamo tako, da bodo za nas delale nekaj koristnega. Takšne celice bi lahko bile uporabne na primer za biosenzorje v diagnostiki, vlgradili bi jih lahko tudi v tkivo pacienta, kjer bi lokalno proizvajale neko biološko zdravilo.” Dr. Tina Lebar s Kemijskega inštituta je v zadnjem letu prejela tri velika priznanja: štipendijo za Ženske v znanosti, Preglovo nagrado za doktorat in pred kratkim še zlati znak Instituta Jožefa Stefana. Kljub vrhunskim dosežkom pa podobno kot njeni številni vrstniki pri tridesetih letih ni redno zaposlena. V prihodnjih mesecih načrtuje nove izzive v Združenih državah Amerike. Predanost znanosti izkazuje na prav unikaten način: temo svojega doktorata z naslovom Načrtovanje genskih regulatornih omrežij na osnovi DNA vezavnih proteinov ima upodobljeno tudi v veliki tetovaži na desni roki. Tina se v prostem času ukvarja s staro istrsko igro pandolo.


12.04.2018

Hvaležni, sočutni in ponosni imamo boljše možnosti za uspeh

Bi raje dobili 17 dolarjev takoj ali 100 dolarjev čez eno leto? Frekvenca X se tokrat sprašuje o uspehu, ali še bolje rečeno – o poti do uspeha. Ameriški psiholog profesor David DeSteno je s psihološkimi eksperimenti ugotovil, da določena čustvena stanja olajšajo našo sposobnost samonadzora in nam pomagajo bolj ceniti prihodnost. V knjigi Emotional Success: The Power of Gratitude, Compassion and Pride pod vprašaj postavlja uveljavljeno tezo, da je edina pot do uspeha garaško delo in odrekanje z močjo volje. O hvaležnosti, sočutju in ponosu bomo govorili z dr. Davidom DeStenom, fizikom in filozofom dr. Sašem Dolencem in nekdanjo vrhunsko plavalko, zdaj pa raziskovalko dr. Natašo Kejžar.


05.04.2018

Izzivi sodobnih jedrskih tehnologij

Prof. Kord Smith upravljanje z jedrsko energijo primerja s pristajanjem njegovega pol stoletja starega letala na neravni travnatni stezi med ameriškimi gorami: z vrhunskim znanjem in veščinami se je mogoče varno soočati z najtežjimi izzivi. Tudi v zelo posebnih okoliščinah. Prof. Smith je eden najvplivnejših reaktorskih fizikov na svetu in tesno sodeluje s slovenskimi strokovnjaki. V reaktor TRIGA je skupaj s kolegom prof. Benom Forgetom pripeljal osem študentov z ugledne univerze MIT, v predmestju Ljubljane so izvedli tečaj eksperimentalne reaktorske fizike. Ameriški gostje uporabljajo najnaprednejša simulacijska orodja za napovedovanje pojavov v jedrskih reaktorjih, pri razvoju sodelujejo z industrijo in imajo dostop do najmočnejših računalnikov v ZDA. Kakšne so aktualne usmeritve v razvoju jedrske energije, kako je z razvojem drugih jedrskih tehnologij na čelu z medicino, kateri so največji izzivi prihodnosti? Sogovorniki: prof. Kord Smith, reaktorski fizik z izkušnjami iz industrije; prof. Benoit Forget, reaktorski fizik z MIT; doc. dr. Luka Snoj, vodja Odseka za reaktorsko fiziko na IJS.


29.03.2018

Duncan Haldane, Nobelovec s slovenskimi koreninami

Nobelov nagrajenec, pa še napol Slovenec. Dr. Duncan Haldane je Nobelovo nagrado dobil leta 2016 na področju fizike za odkritje na področju topolške kvantne snovi. Je raziskovalec, ki v laboratoriju preživi tudi 15 ur na dan, a pravi, da ima to srečo, da je plačan za nekaj, kar resnično rad počne. “Žena me sicer pogosto sprašuje, zakaj si ne vzamem več počitnic, ampak kolege fizike velikokrat spoznavam na zelo lepih krajih in to so moje počitnice. Navdušen sem nad tem, kar počnem.” Njegova mama je bila Slovenka Ljudmila Renko, pogumna zdravnica, ki je svojo družino rešila iz koncentracijskega taborišča: “Dedek je imel v domači kleti skrite zaloge zlatih kovancev. Mama jih je izkopala, si jih všila v obleko, potovala do Hesselberga v Nemčiji in s kovanci podkupila nekaj nemških oficirjev, da so družino izpustili.” Spregovoril je o svoji materi, kaj mu je ta v življenju pomenila in dala, kako Trumpova Amerika podpira znanost in zakaj je pred tridesetimi leti zapustil Veliko Britanijo. Pa seveda tudi o begu možganov, raziskovanju, pomenu poučevanja, mentorstva in interakcije, o tem, da se ne smemo jemati preresno, pa tudi o tem, da je kvantna mehanika zakon.


22.03.2018

Cepljenje med obveznostjo in svobodno voljo

Podrobno smo se spoznali z gripo, simulirali smo potek nalezljivih bolezni, v 3. delu podkasta o epidemijah in pandemijam zdaj raziskujemo, ali imata medicina in znanost še kaj rezerv na področju preprečevanja nalezljivih bolezni. Kako se ustvarjajo nova in bolj učinkovita cepiva ob dejstvu, da njihov razvoj ni več prioriteta farmacevtske industrije, ki veliko več kot s cepivi zasluži z drugimi zdravili. Zanima nas vloga države in zakonodaje pri omejevanju širjenja nalezljivih bolezni. Kako se konstruktivno soočati s pomisleki glede cepljenja in ali bi bilo prostovoljno odločanje o cepljenju dobra rešitev. Lahko napovedana zaostritev zakonodaje tudi v Sloveniji prinese pozitivne ali stranske učinke? Koliko so pri precepljenosti pomembni posamezniki in družba, kakšno vlogo imata pri skrbi za splošno zdravje svobodna volja in individualizem? Sogovorniki: prof. dr. John Oxford, virolog in vodilni strokovnjak za gripo; Eva Vrščaj, vodja projekta Imuno; prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine; dr. Ben Goldacre, avtor knjige Slaba znanost; dr. Veronika Učakar in dr. Maja Sočan, NIJZ. Avtorja/producenta: Luka Hvalc in Maja Stepančič Strokovni sodelavec: dr. Sašo Dolenc Pripovedovalca: Igor Velše in Bernard Stramič Oblikovna podoba: Katja Černela


15.03.2018

Kako se širijo nalezljive bolezni

Podrobno smo se spoznali z gripo in ugotovili, da kljub velikemu napredku znanosti ne moremo preprečiti, da ne bi narava ostala največji bioterorist na svetu. Vseeno pa je mogoče številne nalezljive bolezni zelo omejiti, nekatere tudi izkoreniniti. Predvsem zaradi cepiv, a se precepljenost iz leta v leto zmanjšuje, zato smo priča novih izbruhom. Lani se je v Evropi z ošpicami okužilo 14.500 ljudi, trikrat več kot leto prej. Kaj kažejo simulacije epidemij, kje je kritična meja za nevarnost okuženosti širše družbe, kaj nam pove termin čredne imunosti? Analiziramo primer izbruha ošpic v Disneylandu, hipotetično projiciramo, kako bi se lahko nalezljiva bolezen širila v srednje velikem slovenskem mestu in kaj bi se zgodilo, če bi se ošpice pojavile v vrtcu, ki ga zaradi odločitve staršev obiskuje sto necepljenih otrok. Sogovorniki: Dr. David Pigott, strokovnjak za simulacije poteka nalezljivih bolezni; prof. dr. John Oxford, virolog in vodilni strokovnjak za gripo; prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine; Eva Vrščaj, vodja projekta Imuno. Avtorja/producenta: Luka Hvalc in Maja Stepančič Strokovni sodelavec: dr. Sašo Dolenc Pripovedovalca: Igor Velše in Aleksander Golja Oblikovna podoba: Katja Černela


14.03.2018

Hawkingova radiacija je delovala tudi metaforično

"Moj cilj je preprost: popolno razumevanje vesolja, zakaj je takšno, kakršno je, in zakaj sploh obstaja," je nekoč zapisal znameniti fizik Stephen Hawking, ki je umrl v starosti 76 let. Znan je bil predvsem po svojem delu na področju kvantne gravitacije, posebno glede črnih lukenj, in relativnosti, napisal pa je tudi več poljudnoznanstvenih knjig, najbolj znana je Kratka zgodovina časa. Hawking je bil odličen komunikator znanosti in skoraj pop zvezdnik, med drugim je sodeloval s skupino Pink Floyd. “Kljub bolezni je s svojim pojavljanjem v javnosti in pisanjem knjig, ko je lahko premikal še samo en prst, dokazal, da Hawkingova radiacija deluje tudi metaforično,” ob smrti morda zadnjega univerzalnega misleca sodobnega časa, razmišlja fizik in filozof, dr. Sašo Dolenc, urednik Kvarkadabre in strokovni sodelavec oddaje Frekvenca X. In dodaja: "Stephen Hawking je bil iskren in pristen. Verjeli smo mu, čeprav se je tudi kdaj zmotil. Svoj status je izkoristil za širše teme, zavzel se je na primer za javno zdravstvo."


08.03.2018

Pandemije: Smrtonosna španka

“Tako je oče nepremičen obstal ob pogledu na marmornato belo obličje ljubljene štiriletne hčerke, ki ji španjolka ni prizanesla.” Pisatelj Boris Pahor pretresljivo opiše smrt mlajše sestre Mimice. Umrla je leta 1918 med prvim valom španske gripe, ki je sejala smrt tudi na našem območju. Gripa je v marsičem metafora 20. stoletja, orožje za množično uničenje, za njenimi posledicami je umrlo več ljudi kot za posledicami svetovnih vojn, nacizma, atomske vojne. V sto letih so različne oblike gripe pokosile sto milijonov ljudi. Kaj se lahko naučimo iz zgodovine, kako načrtovati in preprečevati pandemije, zakaj je virus influence tako nepredvidljiv in težko obvladljiv, kako je s cepivi in zakaj kljub velikemu napredku znanosti ne moremo preprečiti, da ne bi narava ostala največji bioterorist na svetu. V prvem delu posebnega podkasta Frekvence X raziskujemo smrtonosno špansko gripo. Z znanjem o njenem nastanku in širjenju se sto let po izbruhu lahko veliko naučimo o pandemijah sedanjosti in prihodnosti. Kako je lahko tako majhnemu virusu uspelo nekaj tako velikega, tako grozljivega? Sogovorniki: prof. dr. John Oxford, vodilni svetovni strokovnjak za gripo; prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine; doc. dr. Maja Sočan, predstojnica centra za nalezljive bolezni NIJZ. Avtorja/producenta: Luka Hvalc in Maja Stepančič Strokovni sodelavec: dr. Sašo Dolenc Pripovedovalec: Igor Velše Oblikovna podoba: Katja Černela


22.02.2018

Človek stroj: od Platona do Terminatorja

Podkast Frekvence X smo snemali v kavarni Mafija na Fakulteti za matematiko in fiziko v Ljubljani. Tema: družbene predstave o človeškem telesu. Pred našimi očmi je bilo človeško telo – analizirali smo predstave telesa v različnih filozofskih tradicijah: vlogo medicine in drugih znanosti pri oblikovanju teh predstav, vpliv religij in drugih mističnih narativov na oblikovanje diskurza o telesu skozi zgodovino, pa tudi vse močnejši vpliv modernih tehnologij nanj, npr. mobilnih aplikacij, ki omogočajo najpreprostejši nadzor in “optimizacijo” naših strojev doslej. Gostje: Dr. Mirt Komel, filozof, Fakulteta za družbene vede Miha Blažič – N’toko, glasbenik, kolumnist in aktivist Dr. Matevž Dular, raziskovalec, Fakulteta za strojništvo


22.02.2018

Pozornost je temelj gradnje družbe in civilizacije

Pozor! Človeška pozornost je eden izmed najbolj omejenih virov v 21. stoletju, vsak jo ima na voljo le določeno količino. Pomaga nam ločevati nepomembne informacije in dražljaje od pomembnih, je ena izmed temeljnih človeških značilnosti, ki nam omogoča izgradnjo družbe in civilizacije. Moderne tehnologije in nenehno odprt tok informacij jo postavljata v novo vlogo – okrog nje se gradi ekonomija pozornosti, v kateri podjetja tekmujejo za košček našega časa in misli. V Frekvenci X o vrstah naše pozornosti, mitih, ki so povezani s trajanjem pozornosti in moderno tehnologijo, posebnih sposobnostih oseb z motnjami avtističnega spektra ter o zavednih in nezavednih procesih, ki jim mnogokrat ne posvečamo dovolj pozornosti.


07.02.2018

Tesla v vesolju: dosežek ali promocija?

Po svetu odmeva izstrelitev največje rakete Falcon Heavy, ki jo je izstrelilo podjetje Space X lastnika tovarne električnih avtomobilov Tesla Elona Muska. Kaj pomeni izstrelitev iz znanstvenega in tehnološkega vidika komentira prof. dr. Tomaž Zwitter. Tudi o tem, da se podjetje Elona Muska zanima za slovensko tehnologijo.


01.02.2018

Jabolko na mizi in slovenski kvazikristal

Zaradi fizikalnih vplivov lahko dobijo preproste plasti celic ali tkiva zelo nenavadne oblike. Če pustimo jabolko nekaj dni na mizi, opazimo, da postaja vse manjše, saj pride do neskladja med prostornino mesa in površino lupine. Ta se naguba. Naš gost prof. dr. Primož Ziherl celične strukture pojasnjuje s poenostavljenimi fizikalnimi modeli in povedno ugotavlja, da je resnica odvisna od tega, s kako natančnim povečevalnim steklom jo želimo videti. Prof. Ziherl je skupaj z japonskim kolegom predlagal tudi fizikalni obstoj novega dvorazsežnega kvazikristala, kar je eden najodmevnejših raziskovalnih dosežkov Univerze v Ljubljani v letu 2017.


25.01.2018

Skrivnost hobotnic in naših možganov

Hobotnica ima osupljive sposobnosti spreminjanja svoje oblike in barvnih vzorcev. Človeštvo fascinira že tisoče let. V sodobnosti simbolizira temno energijo, ki s svojimi lovkami obvladuje politiko in gospodarstvo. V zadnjih letih nevroznanstveniki, evolucijski biologi, tehnologi in znanstveniki s področja robotike poglobljeno raziskujejo to skrivnostno, mistično bitje. Projekt Octopus Brainstorming, ki so ga predstavili v Trbovljah, je plod sodelovanja dveh principov, umetnosti in znanosti. Avtorji ga razvijajo že pet let. Niz EEG senzorjev, vgrajenih v telo hobotnice, osvetljeno z barvnimi lučmi, človeka popelje v hobotničin magični in duhovni svet. Obredno pokrivalo v obliki hobotnice na ta način simbolizira utelešeno inteligentnost. Nevroznanstvenik dr. Marc Cohen in umetnica Victoria Vesna raziskujeta komunikacijo med ljudmi na osnovi analize njihovih možganskih valov. Kaj se lahko naučimo iz ugotovitev in katere bolezni bi lahko zdravili?


18.01.2018

Radioaktivni odpadki

Za radioaktivne odpadke je treba skrbeti še dolgo po tem, ko jih odložimo. Nekateri materiali namreč lahko ostanejo radioaktivni tudi po več deset tisoč let. V Sloveniji jih velika večina nastaja v Nuklearni elektrarni Krško, ne pa vsi – prihajajo tudi iz bolnišnic, raziskovalnih središč in industrije, najdemo pa jih celo v povsem vsakdanjih predmetih, ki na prvi pogled nikakor ne delujejo radioaktivno. Kako torej skrbimo zanje?


11.01.2018

Roboti kot profesorji in ljubimke

Japonski pionir humanoidne robotike Hiroši Išiguro je pred leti v Trbovlje pripeljal svojega robotskega dvojnika, ki je popolna kopija stvaritelja. Najnovejša različica robotskega profesorja ima vrhunsko izpopolnjen obraz, mimika, kretnje in govor v popolnosti spominjajo na človeka, tako da robotski profesor prepričljivo predava študentom. Pri (človeškem) prof. Ishiguru bo kmalu doktorirala Slovenka Maša Jazbec. Na Japonskem na leto prodajo 2 tisoč tehnološko vrhunsko izpopolnjenih seks robotov, ki osamljenim moškim čustveno in seksualno nadomeščajo partnerke. Konec decembra je v Londonu potekala mednarodna konferenca o seksu in ljubezni z roboti, na kateri je britanski raziskovalec umetne inteligence David Levy napovedal, da bodo nekoč lahko imeli ljudje z roboti celo otroke. Na konferenci je bila tudi slovenska antropologinja Nika Mahnič, sicer aktivistka kampanje proti seks robotom. Kje so meje in robovi sodobne humanoidne robotike?


04.01.2018

Skrivnostno življenje skrivnosti

V antiutopičnem delu 1984 je George Orwell dejal, da če želiš ohraniti skrivnost, jo moraš najprej skriti pred samim seboj. Z znanstveniki poskušamo ugotoviti, kako uspešni smo pri tem, katere so tiste skrivnosti, ki jih ljudje največkrat prikrivamo, zakaj nam to prikrivanje slabša kakovost življenja in ali je razkritje edina prava pot do odrešitve. Naši gosti bodo: profesor menedžmenta Michael Slepian z Univerze Columbia v New Yorku, nevropsiholog Jonathan Schooler z Univerze Santa Barbara, psihoterapevtka Katja Istenič in pravnik Dino Bauk.


Stran 15 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov