Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


Frekvenca X

693 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


25.01.2018

Skrivnost hobotnic in naših možganov

Hobotnica ima osupljive sposobnosti spreminjanja svoje oblike in barvnih vzorcev. Človeštvo fascinira že tisoče let. V sodobnosti simbolizira temno energijo, ki s svojimi lovkami obvladuje politiko in gospodarstvo. V zadnjih letih nevroznanstveniki, evolucijski biologi, tehnologi in znanstveniki s področja robotike poglobljeno raziskujejo to skrivnostno, mistično bitje. Projekt Octopus Brainstorming, ki so ga predstavili v Trbovljah, je plod sodelovanja dveh principov, umetnosti in znanosti. Avtorji ga razvijajo že pet let. Niz EEG senzorjev, vgrajenih v telo hobotnice, osvetljeno z barvnimi lučmi, človeka popelje v hobotničin magični in duhovni svet. Obredno pokrivalo v obliki hobotnice na ta način simbolizira utelešeno inteligentnost. Nevroznanstvenik dr. Marc Cohen in umetnica Victoria Vesna raziskujeta komunikacijo med ljudmi na osnovi analize njihovih možganskih valov. Kaj se lahko naučimo iz ugotovitev in katere bolezni bi lahko zdravili?


18.01.2018

Radioaktivni odpadki

Za radioaktivne odpadke je treba skrbeti še dolgo po tem, ko jih odložimo. Nekateri materiali namreč lahko ostanejo radioaktivni tudi po več deset tisoč let. V Sloveniji jih velika večina nastaja v Nuklearni elektrarni Krško, ne pa vsi – prihajajo tudi iz bolnišnic, raziskovalnih središč in industrije, najdemo pa jih celo v povsem vsakdanjih predmetih, ki na prvi pogled nikakor ne delujejo radioaktivno. Kako torej skrbimo zanje?


11.01.2018

Roboti kot profesorji in ljubimke

Japonski pionir humanoidne robotike Hiroši Išiguro je pred leti v Trbovlje pripeljal svojega robotskega dvojnika, ki je popolna kopija stvaritelja. Najnovejša različica robotskega profesorja ima vrhunsko izpopolnjen obraz, mimika, kretnje in govor v popolnosti spominjajo na človeka, tako da robotski profesor prepričljivo predava študentom. Pri (človeškem) prof. Ishiguru bo kmalu doktorirala Slovenka Maša Jazbec. Na Japonskem na leto prodajo 2 tisoč tehnološko vrhunsko izpopolnjenih seks robotov, ki osamljenim moškim čustveno in seksualno nadomeščajo partnerke. Konec decembra je v Londonu potekala mednarodna konferenca o seksu in ljubezni z roboti, na kateri je britanski raziskovalec umetne inteligence David Levy napovedal, da bodo nekoč lahko imeli ljudje z roboti celo otroke. Na konferenci je bila tudi slovenska antropologinja Nika Mahnič, sicer aktivistka kampanje proti seks robotom. Kje so meje in robovi sodobne humanoidne robotike?


04.01.2018

Skrivnostno življenje skrivnosti

V antiutopičnem delu 1984 je George Orwell dejal, da če želiš ohraniti skrivnost, jo moraš najprej skriti pred samim seboj. Z znanstveniki poskušamo ugotoviti, kako uspešni smo pri tem, katere so tiste skrivnosti, ki jih ljudje največkrat prikrivamo, zakaj nam to prikrivanje slabša kakovost življenja in ali je razkritje edina prava pot do odrešitve. Naši gosti bodo: profesor menedžmenta Michael Slepian z Univerze Columbia v New Yorku, nevropsiholog Jonathan Schooler z Univerze Santa Barbara, psihoterapevtka Katja Istenič in pravnik Dino Bauk.


28.12.2017

Znanstveni presežki 2017

Leto 2017 je ubiralo svojstveno pot tudi v znanosti. Od prelomnih odkritij v vesolju, vznemirljivih prebojev v medicini in genetiki, krute realnosti v okoljski znanosti, do slovenskih prebojev v biologiji, fiziki in kemiji … Navkljub slabi finančni podpori države so naši raziskovalci vedno bolj uspešni, tudi pri pridobivanju evropskih sredstev. Ekipa Frekvence X je izbrala nekatere odmevne tuje in domače znanstvene dosežke. Od klasične do digitalne tablete, od čiščenja vode s kavitacijo do bolj učinkovitih škropiv, od kompleksnosti do poljudnosti. Pripovedujeta Maja Ratej in Luka Hvalc.


14.12.2017

Smemo življenje tehtati z drugim življenjem?

Kaj bi storili, če bi se znašli v brezizhodnem položaju odločiti se nekoga rešiti, pri tem pa žrtvovati nekoga drugega. Smete izvesti matematični izračun in žrtvovati enega človeka, da bi jih rešili sto? Moralna dilema, pred katero se najverjetneje nikoli ne bomo znašli, daje dober vpogled v razmišljanje ljudi in kako bi reagirali v kritičnih trenutkih. Smo torej pripravljeni odigrati vlogo v igri in nekoga žrtvovati? Kdaj pa se od odločanja distanciramo in dilemo opredelimo kot moralno sporno, kdaj se odločamo racionalno in kdaj čustveno ter kakšne dileme obstajajo tudi v vsakdanjem življenju, za katere se sploh ne zavedamo, da o njih moralno odločamo? O moralnih dilemah smo razpravljali s filozofom Mirtom Komelom s Fakultete za družbene vede in nevroznanstvenikom Fieryjem Cushmanom z Univerze Harvard.


07.12.2017

Slovenski znanstveniki bi vodo čistili s kavitacijo

Prestižni Evropski raziskovalni svet, podeljevalec najuglednejših evropskih raziskovalnih projektov, je nekaj manj kot 2 milijona evrov namenil slovenskim raziskovalcem. Na tako imenovani Consolidator ravni je bila uspešna ekipa prof. dr. Matevža Dularja z ljubljanske Strojne fakultete, njihov projekt CABUM se ukvarja kavitacijo, to je z nastajanjem mehurčkov plina v tekočinah.Gre za fundamentalne raziskave, ki so pomembne tako za delovanje raketnega motorja kot za ropot domačega sokovnika. Izjemno pomembna pa je uporaba za čiščenje voda, v katerih s kavitacijo lahko uničimo viruse in bakterije in to brez uporabe kemije. In prav na področju čiščenja vode, bodo slovenski znanstveniki nadaljevali raziskave, ki obetajo velik preboj. Osrednji gost podkasta dr. Matevž Dular je eden izmed najmlajših rednih profesorjev ljubljanske univerze, a je še vedno zaposlen le za določen čas. Večino doktorata je opravil v Nemčiji, sodeluje s številnimi uglednimi tujimi inštituti, projektno tudi z Evropsko vesoljsko agencijo. Ob koncu z našim rednim sodelavcem prof. Tomažem Zwittrom govorimo tudi o zmagovalcu mednarodne olimpijade iz astronomije in astrofizike Alekseju Jurci in izpostavljamo decembrske astronomske zanimivosti.


30.11.2017

Zemljevidi ustvarijo in popačijo našo podobo sveta

Svet ni tak, kot si ga predstavljamo z zemljevidov. In to iz enega samega razloga – ker je okroglo Zemljo nemogoče preslikati na raven list papirja, brez da bi jo vsaj delno popačili. Grenlandija zato na klasičnem zemljevidu sveta izgleda večja od Evrope, čeprav je v resnici skoraj petkrat manjša. Tudi orientacija karte je stvar družbenega dogovora – evropske srednjeveške karte so bile denimo obrnjene proti vzhodu. V Frekvenci X o kartografiji, tisti klasični, ki preko različnih vrst projekcij skuša svet spraviti v eno ravnino, in modernih tehnologijah, ki te pristope povsem spreminjajo. Gosti: dr. Dušan Petrovič, predstojnik Katedre za kartografijo na Fakulteti za gradbeništvo in geodezijo mag. Roman Rener, Geodetski inštitut Slovenije Boštjan Burger, geograf in informatik


23.11.2017

Veliko podatkov za velikega brata

Nikoli v zgodovini nismo imeli toliko zabeleženih podatkov o svetu in družbi. Vedno učinkovitejše metode odbiranja in združevanja določenih delov ogromnih podatkovnih baz v uporabne informacijske pakete bodo v prihodnosti najverjetneje sestavljali enega najmočnejših orodij za tiste, ki ga bodo lahko uporabljali.Podjetjem računalniško upravljanje z bazami podatkov že pomaga učinkoviteje oglaševati in tako bolje poslovati na trgu, državam pomaga voditi evidence o svojih prebivalcih in tako bolje prepoznavati ter razreševati ali preprečevati probleme, s katerimi se srečujejo, delodajalcem lajša odločitev o zaposlitvi določenega kandidata, sodobne metode upravljanja s podatki lahko pomenijo tudi pomemben napredek v medicini, natančneje v diagnostiki … in tako naprej. Potencial za družbi koristno uporabo novega znanja na področju dela z bazami podatkov je – kot baze same – ogromen. Žal pa lahko to močno orodje v nepravih rokah v prihodnje pomeni tudi zdrs v distopično družbo; situacijo, v kateri se ne bomo mogli nikakor skriti pred velikim bratom, ki nam bo sledil na vsakem koraku, beležil podatke o nas in nas po svojih kriterijih vrednotil.Kitajska ni daleč od tega orwellovskega scenarija: že čez tri leta naj bi po načrtih tamkajšnjih oblasti zaživel tako imenovani Sistem socialnega kapitala, prek katerega bo kitajski veliki brat razpolagal z obširnimi paketi podatkov o svojih državljanih ter jih za zaželene oziroma nezaželene vedenjske vzorce nagrajeval oz. kaznoval. Katere etične dileme moramo razrešiti, če se prednostim sodobnih znanstvenih dognanj s področja družboslovne informatike ne želimo odpovedati, obenem pa preprečiti, da bi se “kitajska prihodnost” zgodila tudi nam? Gostje: Dr. Luka Kronegger, katedra za družboslovno informatiko in metodologijo FDV; Jean-Philippe Schepens, podatkovni znanstvenik in ekonomist; Dr. Michal Kosinski, univerza Stanford, doktorat iz všečkov.


16.11.2017

Od avtomobila Yugo do zdravljenja diabetesa

Nevtronsko sipanje je nova metoda, s katero se ukvarjajo tudi slovenski znanstveniki, z njeno pomočjo si lahko med drugim obetamo še večji napredek kvantnega računalništva, razvoj alternativnih virov energije in nova dognanja v medicini in farmaciji. Kako bodo sodobni pristopi v raziskavah magnetizma in materialov spremenili industrijo in naše življenje, na katerih področjih lahko nevtroni prispevajo ključne korake in kakšna je pri tem vloga slovenskih znanstvenikov? Podkast smo posneli v študentski Kavarni Mafija na Fakulteti za matematiko in fiziko v Ljubljani. Gosta sta bila dr. Franci Merzel s Kemijskega inštituta in dr. Matej Pregelj z Inštituta Jožefa Štefana, v Grenoble smo poklicali dr. Marka Johnsona.


09.11.2017

Recept za uspešnico

Kako napisati hit, je vprašanje, na katerega ni univerzalnega odgovora. Med ljudmi je praviloma popularno tisto, kar lahko hitro in brez napora prepoznajo. Učinek prepoznanja je pomemben, saj posameznika navda z zadovoljstvom, vendar zgolj ponavljanje že znanega ni najboljša formula za popularnost. Recept za uspešnico je praviloma ravno pravšnja mešanica že poznanega in novega, a zgolj vrhunska ideja ni dovolj, kot ključna dodana vrednost se večkrat izkaže tudi nadpovprečno obrtniško znanje, vrhunsko obvladanje forme. V čem je skrivnost uspešnih glasbenikov, režiserjev, pa tudi politikov in predstavnikov še kakšne profesije, ki se ne ukvarja izključno s tehničnimi ali naravoslovnimi področji? Gostje: Derek Thompson (avtor knjižne uspešnice Hit Makers: The Science of Popularity), Stojan Pelko (filmski publicist in komunikacijski strateg), Magnifico (glasbenik in avtor številnih hitov), dr. Sašo Dolenc (fizik in filozof)  


02.11.2017

Vsi zvoki našega mesta

Metanje steklenic v zabojnike, harmonika od zore do mraka, brnenje kosilnic in puhalnikov za listje … To je le nekaj zvokov, ki zaznamuje našo bolj ali manj urbano zvočno krajino. Projekt Zvočna ekologija mest podrobno analizira zvoke v mestnih središčih in četrtih in se dotika vprašanja, kako se zvočnost določenih delov mesta spreminja zaradi družbeno-političnih procesov in ekonomskih interesov. Na spremembe v urbani zvočni krajini vplivajo tudi globalizacija, turizem in zabava. Ljudje s soustvarjanjem zvočne krajine vstopajo tudi v javni politični prostor. Kaj pa zvoki mesta povedo o nas? Kateri zvoki nas v javnem prostoru najbolj motijo in zakaj? Kakšne so naše osebne zvočne krajine? Razpravljamo z gostjama z ZRC SAZU, dr. Mojco Kovačič z Glasbenonarodopisnega inštituta in dr. Ano Hofman z Inštituta za kulturne in spominske študije.


26.10.2017

Orkani - uničujoči velikani

“Ko letimo proti očesu orkana, je to najbolj nemirno območje. Takrat pihajo najmočnejši vetrovi, ki letalo sukajo levo in desno. Ko pa se enkrat prebijemo skozi orkan, nas čaka izjemen prizor - sončno vreme, okrog pa čudovite strukture oblakov, kot bi jih nekdo naslikal,” tako svojo pot skozi orkane opisuje meteorolog in lovec na orkane Ryan Rickert s 53. izvidniške meteorološke eskadrilje. Da so orkani nekaj izjemnega (in hkrati grozljivega), se lahko prepričamo vsako poletje, ko silovito udarijo predvsem v državah v Karibskem morju. Letošnja orkanska sezona se zdaj približuje koncu, kaj pa nam je pustila? Veliko opustošenja, pa tudi vprašanj - ali je pojav vedno močnejših orkanov posledica našega vpliva na podnebje ali so vedno obstajali tako uničujoči orkani. Poleg tega pa se bomo z lovcem na orkane odpravili vse do očesa tropskega ciklona. Pripnite si varnostne pasove in poletite z nami.


19.10.2017

Proteinski origami in nevtronske zvezde s slovenskim pridihom

Na Kemijskem inštitutu v Ljubljani so razvili nov tip proteinskih struktur, ki se lahko brez škodljivih učinkov sintetizirajo v celicah ter se same od sebe sestavijo v nanometrske kletke. Te imajo velik potencial za dostavo zdravil v medicini, tvorbo sodobnih cepiv, snovanje funkcionalnih materialov … Skrivnost proteinskih origamijev pojasjujeta dr. Ajasja Ljubetič in Fabio Lapenta, avtorja raziskave, objavljene v reviji Nature Biotechnology. Astronomi Evropskega južnega observatorija pa so pomočjo mreže teleskopov v Čilu prvič zaznali vir gravitacijskih valov, ki naj bi jih povzročilo trčenje in zlitje dveh nevtronskih zvezd. Pri tem je to trčenje v vesolje izvrglo številne težke elemente, kot sta zlato in platina. Odkritje, pri katerem so sodelovali tudi slovenski astrofiziki, predstavlja najmočnejši dokaz doslej, da so kratkotrajni izbruhi žarkov gama posledica trkov nevtronskih zvezd. Kaj pomeni prelomno odkritje razložita dr. Andreja Gomboc z Univerze v Novi Gorici in dr. Nial Tanvir z Univerze Leicester v Veliki Britaniji.


12.10.2017

Sončevi vplivi in nogomet

Skupina satelitov Cluster preučuje magnetosfero v okolici Zemlje. Ta nas ščiti pred delci Sončevega vetra, ki bi sicer precej neugodno vplivali na življenje na Zemlji. Gre za par satelitov, ki sta bila izstreljena leta 2000 in bosta delovala vsaj do leta 2018. Kako je mogoče obnašanje Sonca primerjati celo z nogometom in kaj smo se naučili od pristanka sonde Rosetta na kometu Čurjumov - Gerasimenko, sta nam pojasnila vrhunska znanstvenika Evropske vesoljske agencije, francoski raziskovalec Philippe Escoubet in britanski astrofizik Matt Taylor, ki sta pred tedni gostovala na Bledu. Z našim strokovnim sodelavcem prof. Tomažem Zwittrom tudi o jesenskih aktualnostih iz sveta astronomije.


05.10.2017

Nobelove nagrade 2017

Cirkadiani ritmi, gravitacijski valovi in krioelektronska mikroskopija vam verjetno ne povedo veliko, če pa dodamo, da so to teme, ki so si letos prislužile Nobelovo nagrado, veste vsaj, da gre za prelomne raziskave v znanosti. Na področju medicine in fiziologije so Nobelovo nagrado dobili Jeffrey C. Hall, Michael Rosbash and Michael W. Young, na področju fizike je polovico nagrade dobil Rainer Weiss, po četrtino pa Barry C. Barish in Kip S. Thorne, na področju kemije pa Jacques Dubochet, Joachim Frank in Richard Henderson. Kako pomembna so odkritja teh znanstvenikov razlagamo ob pomoči slovenskih strokovnjakov.


24.09.2017

Lubadar je ekonomski, ne biološki problem

Pravljice o Rdeči kapici in volku nam že v otroštvu v kosti poženejo vsaj malo strahu pred gozdovi, a dr. Andraž Čarni, ki veliko časa preživi med drevesi, pravi, da je strah največkrat brez osnove. Medvedi resda tu in tam prilomastijo, a realno je še vedno majhna možnost, da naletimo nanje, divje živali se načeloma tudi rade skrijejo pred človekom. Je pa zato v gozdovih veliko drugih zanimivosti. Dr. Čarni je biolog na Inštitutu Jovana Hadžija ZRC SAZU in eden izmed ključnih ljudi za vpis naših pragozdov Krokar in Snežnik Žrdolce na Unescov seznam svetovne naravne dediščine. Je odličen poznavalec balkanskih gozdov, pred kratkim je postal član makedonske akademije znanosti in umetnosti. Pogovarjamo se tudi o lubadarju, ki je predvsem posledica šibkih zim in napada pospeševano posajene smreke v nižinskih gozdovih. Z dr. Čarnijem se je pogovarjal Luka Hvalc.


21.09.2017

Vozovnica za Mars bi bila enosmerna

Vesoljsko vreme je eno izmed raziskovalnih polj dr. Primoža Kajdiča iz Murske Sobote, ki že 14 let živi in dela v Mehiki, kjer je astronomija zanimala že Maje. Dr. Kajdič je objavil 30 znanstvenih člankov, zanimajo ga predvsem udarni valovi v bližini Zemlje, ki nastanejo kot posledica dejavnosti Sonca. V Sloveniji je septembra zbral vesoljske fizike z vsega sveta, ki so predstavljali svoja najnovejša dognanja, do katerih so prišli ob pomoči podatkov, ki jih že več kot 15 let zbira misija Cluster. Sodelovanje pri evropskih in globalnih vesoljskih projektih je priložnost tudi za slovenska podjetja, ki so že aktivna na področju 3D tiska. Z dr. Primožem Kajdičem se je pogovarjal Luka Hvalc.


14.09.2017

Študij biologije je bila pragmatična odločitev

Čeprav ga je mikal študij umetnosti, se je odločil za biologijo: “To je bila čisto pragmatična odločitev, ker tudi v tem vidim estetiko, življenje ima neko lepoto v sebi,” pravi dr. Jernej Ule, molekularni biolog, ki že več kot deset let dela in raziskuje v tujini. Zdaj živi v Londonu. Na univerzi University College v Londonu raziskuje nastanek nevrodegenerativnih bolezni, v tem obdobju je predvsem vpet v raziskovanje morebitnega zdravila za amiotrofično lateralno sklerozo. Več o molekularni biologiji, življenju v Londonu, tekmovalnosti v raziskovalni panogi, lepoti staranja in poetičnosti življenja pa v pogovoru z Majo Stepančič.


06.09.2017

Dr. Marko Mikuž: Veliko delamo, da bi malo razumeli

Prof. dr. Marko Mikuž je prvič prišel v ženevski Cern kot nadobudni doktorski študent pred več kot tridesetimi leti, presenetili sta ga zanikrna zunanjost in vrhunska oprema v notranjosti. S sodelavci je v naslednjih desetletjih pripomogel k potrditvi obstoja enega od osnovnih delcev materije, Higgsovega bozona, za kar je bila leta 2013 podeljena tudi Nobelova nagrada. Skupaj s 13 slovenskimi kolegi, ki znotraj Cerna delujejo pri projektu Atlas, je dr. Mikuž letos sodeloval pri odkritju nove lastnosti svetlobe. Naši fiziki imajo v bližini pospeševalnika najeto stanovanje, ki mu ljubkovalno rečejo Cukrarna, prof. Mikuž pa tam zelo pogosto tudi kuha. Na vratih njegove ljubljanske pisarne na Inštitutu Jožefa Štefana so prilepljene startne številke z različnih maratonov, teče tudi, ko je službeno v Cernu. Dr. Marko Mikuž je pronicljiv in natančen sogovornik, ki zna marsikaj povedati v prenesenem pomenu. Ob zadnjem dokazu za sipanje svetlobe na svetlobi pri trkih svinčenih ionov je spomnil tudi na očarljivost mavrice. “Veliko delamo, da nekaj malega kdaj pa kdaj tudi dobimo. In razumemo. Se splača. Pa tudi človeštvo drugače ne zna funkcionirati. Ljudje moramo delovati v pravi smeri, da pridemo do dosežkov.” V prvem iz serije septembrskih intervjujev z vrhunskimi slovenskimi znanstveniki in raziskovalci se Luka Hvalc z dr. Mikužem pogovarja o dosežkih, kompleksnosti in preprostosti fizike, razumevanju in sistemu, življenjski in delovni filozofiji.


Stran 16 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov