Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Kvantni računalniki. Kako blizu smo kvantnim računalnikom, bodo sploh kdaj tako splošno uporabni, kot so ti, ki jih uporabljamo danes?

27.10.2011


Ideja o kvantnem računalniku se je porodila znamenitemu ameriškemu fiziku Richardu Feynmannu, Nobelovemu nagrajencu za kvantno teorijo elektro magnetizma, ko je leta 1982 razmišljal o možnosti univerzalne simulacije fizikalnih procesov.

Za vsaj osnovno razumevanje delovanja kvantnega računalnika moramo razumeti dva pojmovna koncepta, v katerih je kvantna fizika bistveno različna od klasične newtonowske fizike.


Prvi je princip »kvantne superpozicije«, ki pravi, da so kvantna stanja v resnici nekakšne kombinacije vseh mogočih klasičnih stanj hkrati. Drugi, še manj predstavljiv, za učinkovito delovanje kvantnega računalnika pa še bolj bistven, pa je koncept »kvantne prepletenosti«.

Kvantna prepletenost se npr. že uporablja za povsem varno komunikacijo po povsem običajnih, komercialnih telekomunikacijskih optičnih linijah. Že leta 2004 je npr. skupina prof. Antona Zeilingerja na Dunaju uspešno izvedla demonstracijo varnega kvantnega bančnega nakazila.

Razlog, da kvanti računalniki še niso dosegljiva realnost, tiči v težko premostljivih tehnoloških ovirah, ki so povezane s pojavom, ki mu fiziki pravijo dehokerenca. Fiziki in inženirji si intenzivno prizadevajo poiskati tehnološke rešitve, kjer bi vlogo dekoherence ohromili ali vsaj omilili.

Glede na to, da v laboratorijih za zdaj raziskujejo kar nekaj še povsem različnih tehnologij, je videti, da smo od končne odločitve o najbolj perspektivni rešitvi še precej daleč. Testne tehnologije za zdaj segajo od hladnih atomov, ki jih z dobro umerjenimi laserskimi sunki vzdržujejo pri izjemno nizkih temperaturah, prek magnetne resonance do kvantno prepletenih superprevodnih električnih tokovnih zank v nekakšnih »kvantnih čipih«.

INTERVJU

Gost Frekvence X je bil prof. Tomaž Prosen, ki se ukvarja se s teoretično in matematično fiziko in s področjem kvantne informatike na Fakulteti za matematiko in fiziko v Ljubljani:

Svet kvantne fizike, iz katerega zajema tudi kvantno računalništvo, je težko umljiv celo fizikom, kaj šele običajnim ljudem. Ga je sploh mogoče razumeti?

Težko. Seveda si pomagamo s prispodobami iz vsakdanjega sveta, predvsem, ko učimo kvantno fiziko, vendar je vse takšne analogije treba jemati z rezervo. Na primer znamenita Schrödingerjeva mačka, s katero ponazorimo princip kvantne superpozicije stanj mačke v povsem izolirani škatli s strupom, ki je lahko v vsoti stanj živa in mrtva hkrati. Problem tiči v naših čutilih, ki določajo naš predstavni svet. Vsa namreč temeljijo na makroskopskih pojavih, kjer so kvantni efekti že povsem ohromljeni zaradi pojava, ki mu pravimo dekoherenca. Po domače, zaradi nenehnega opazovanja velikega brata iz okolice.

Za običajno intuicijo ljudi so zakoni kvantne fizike dokaj nenavadni, kaj pa je v kvantni mehaniki tako zelo drugače?

Verjetno največji miselni paradoks je sama možnost obstoja superpozicij, t. j. dejstva, da je lahko kvantni sistem v več klasičnih stanjih hkrati. Npr. isti atom je lahko hkrati tu in tam, kvantna vrtavka se lahko hkrati vrti v dveh smereh. Možnost, da bi šlo zgolj za verjetnostno porazdelitev med več možnimi klasičnimi stanji izključimo z opazovanjem interference, podobno kot pri valovih. Npr. mala žogica v obliki molekule fuklerena, t. j. ogljika C60, gre lahko hkrati skozi več luknjic v mrežasti oviri, kar dokažejo tako, da lahko na zaslon oz. detektor prileti samo v točno določenih smereh. Podobno kot svetloba z zvezde, ki jo zvečer opazujemo iz spalnice skozi tkanino prosojnih zaves, ko namesto ene svetle pikice vidimo enakomeren mrežast vzorček interferenčnih pikic. Obstoj prepletenih kvantnih stanj pa omogoča npr. pojav kvantne teleportacije, nekaj precej podobnega kot v fantastični zgodbi StarTrek. Vendar kvantna teleportacija ni samo ideja, v zadnjih letih jo znajo v laboratorijih že realizirati. Npr. kvantna teleportacija je tudi način, kako kvantni računalnik prepisuje in transportira svoje kvantne podatke iz enega registra v drugega.

Kvantni računalniki bi lahko nekatere težke računske probleme rešili bistveno hitreje kot klasični. So tudi nekaj, kar po zakonih kvantne mehanike mora obstajati, vendar za zdaj obstaja le njihova miselna konstrukcija. Zakaj jih je tako težko zgraditi, realizirati?

No, ni čisto res, da so zgolj miselna konstrukcija. Obstajajo preprosti eksperimentalni modeli kvantih računalnikov, ki povsem splošno lahko manipulirajo (računajo) z nekaj kvantnimi biti. Obstaja tudi nekakšen hibridni model kvantnega računalnika, takoimenovani D-Wave One, ki računa celo s 128 kvantnimi biti. Vseeno pa so tehnološke težave pri konstrukciji kvantnih računalnikov zelo velike. V glavnem so povezane s tako-imenovano dekoherenco, t. j. porušitvijo kvantne koherence, zaradi pomanjkljive izolacije kvantnega računalnika od okolice. Popolna izolacija pa spet ni mogoča, ker moramo na koncu kvantnega računanja rezultat odčitati. Pravimo, da moramo kvantni register pomeriti. Tako smo prisiljeni v nekakšno kompromisno izolacijo, ki nam omogoča omejeno število kvantnih operacij, preden dehoherenca kvantni račun pokvari. A težave, čeprav so hude, niso principielne.

Kvantni računalnik ni digitalni računalnik, ampak je trenutno še vedno bolj podoben analognemu računalniku, ki si zgolj pomaga s kvantno fiziko. Kaj sploh pričakujemo od kvantnega računalnika, kakšne so njegove posebnosti in odlike?

Za zdaj ni jasno, ali bo kvantni računalnik sploh kdaj tako splošno uporaben, kot so ti, ki jih uporabljamo danes. Seznam algoritmov / postopkov, ki jih kvantni računalnik rešuje bistveno hitreje kot klasični, je še vedno precej kratek. Kvantni računalnik tudi redko izračuna točen rezultat, saj je na koncu potrebno takoimenovano kvantno merjenje pri katerem – po Einsteinu – Bog vrže kocko. Za točno utemeljitev rezultata je zato treba postopek izvajanja programa na kvantnem računalniku večkrat ponoviti, podobno kot pri nekakšnem verjetnostnem poskušanju. Ima pa kvantni računalnik bistveno prednost pred klasičnim verjetnostnim strojem: za določitev ene izmen N reči je potrebno v povprečju poskusiti samo koren iz N-krat, ne pa N-krat kot pri klasičnem verjetnostnem računu.

Če želite poiskati eno stvar v popolnoma razmetani sobi in je v njej tema, potem boste, če veljajo samo zakoni klasične fizike in če je v sobi sto reči, morali stokrat ali pa recimo petdesetkrat v povprečju na slepo potegniti neznani predmet iz sobe in pogledati, če je pravi, da boste našli pravega. Če pa imate informacijo o predmetih zakodirano v kvantnem računalniku, se zgodi, da bo treba to narediti le desetkrat, kar je koren iz stokrat. Kvantna mehanika v tem smislu je povsem neintuitivna, da omogoča takšne paradoksalne stvari.

Je to, da je neke vrste verjetnostni stroj, težava ali bolj filozofsko vprašanje?

Kot sem poskusil pojasniti malo prej, to ni resna težava. Razen tega, da to pač ni digitalni stroj in zato rezultat računa ni nikoli eksakten. Kar pa sploh ni problematično, pri problemih, katerih rešitev je sicer težko poiskati, preveriti – preveriti, če je rešitev prava, pa ni težko. Na primer znameniti problem osmih kraljic, ki jih moramo po šahovnici razporediti tako, da se med seboj ne napadajo. Ali pa vprašanje, ali se da veliko celo število zapisati kot produkt dveh manjših, a še vedno velikih celih števil. To je v kriptografiji posebnega pomena.

Zdi se, da je pomembna filozofska iztočnica vprašanje, ali je kvantni računalnik morda prva zares umetna tvorba, ki jo narava sama po sebi sicer zares še ne uporablja. Če nevronske sisteme višje razvitih živali in ljudi lahko razumemo kot nekakšne verjetnostne računalnike (zaradi šuma, v katerem delujejo in ki je pomemben za njihovo učinkovitost), pa se zdi, da koncepta kvantnega računalnika narava še ni zares izkoristila. Potemtakem bi bil kvantni računalnik prvi zares umeten tehnološki koncept.

Ali to pomeni, da nekega pomembnega dela narave ljudje še ne obvladujemo? Se ob tem pojavljajo tudi filozofski zadržki?

Vprašanje je, če morda ravno zaradi tega, ker narava še sama ni našla koristne uporabe kvantnega računanja, ne obstajajo tudi resnejši razlogi, da bi imel tudi človek ob tem nepremostljive težave. Ampak za zdaj ne poznamo zakona narave, ki bi nam preprečeval zasnovo učinkovitega kvantnega računalnika.

Imajo pričakovanja, da bomo kmalu dobili splošno uporabne stroje, ki bi v vsem prekašali klasične računalnike, že kakšno realno podlago?

Da in ne. Vprašanje je, kaj bi bilo za vas zadosti splošno uporabno. Zdi se, da bodo prvi kvantni računalniki predvsem simulatorji za druge fizikalne procese, ali pa bodo reševali diskretne optimizacijske probleme, npr. iskali optimalen sprehod po zemljevidu in podobno. Takšne vrste problemov naj bi npr. znal učinkovito reševati nedavno predstavljeni Dwave one.


Frekvenca X

692 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Kvantni računalniki. Kako blizu smo kvantnim računalnikom, bodo sploh kdaj tako splošno uporabni, kot so ti, ki jih uporabljamo danes?

27.10.2011


Ideja o kvantnem računalniku se je porodila znamenitemu ameriškemu fiziku Richardu Feynmannu, Nobelovemu nagrajencu za kvantno teorijo elektro magnetizma, ko je leta 1982 razmišljal o možnosti univerzalne simulacije fizikalnih procesov.

Za vsaj osnovno razumevanje delovanja kvantnega računalnika moramo razumeti dva pojmovna koncepta, v katerih je kvantna fizika bistveno različna od klasične newtonowske fizike.


Prvi je princip »kvantne superpozicije«, ki pravi, da so kvantna stanja v resnici nekakšne kombinacije vseh mogočih klasičnih stanj hkrati. Drugi, še manj predstavljiv, za učinkovito delovanje kvantnega računalnika pa še bolj bistven, pa je koncept »kvantne prepletenosti«.

Kvantna prepletenost se npr. že uporablja za povsem varno komunikacijo po povsem običajnih, komercialnih telekomunikacijskih optičnih linijah. Že leta 2004 je npr. skupina prof. Antona Zeilingerja na Dunaju uspešno izvedla demonstracijo varnega kvantnega bančnega nakazila.

Razlog, da kvanti računalniki še niso dosegljiva realnost, tiči v težko premostljivih tehnoloških ovirah, ki so povezane s pojavom, ki mu fiziki pravijo dehokerenca. Fiziki in inženirji si intenzivno prizadevajo poiskati tehnološke rešitve, kjer bi vlogo dekoherence ohromili ali vsaj omilili.

Glede na to, da v laboratorijih za zdaj raziskujejo kar nekaj še povsem različnih tehnologij, je videti, da smo od končne odločitve o najbolj perspektivni rešitvi še precej daleč. Testne tehnologije za zdaj segajo od hladnih atomov, ki jih z dobro umerjenimi laserskimi sunki vzdržujejo pri izjemno nizkih temperaturah, prek magnetne resonance do kvantno prepletenih superprevodnih električnih tokovnih zank v nekakšnih »kvantnih čipih«.

INTERVJU

Gost Frekvence X je bil prof. Tomaž Prosen, ki se ukvarja se s teoretično in matematično fiziko in s področjem kvantne informatike na Fakulteti za matematiko in fiziko v Ljubljani:

Svet kvantne fizike, iz katerega zajema tudi kvantno računalništvo, je težko umljiv celo fizikom, kaj šele običajnim ljudem. Ga je sploh mogoče razumeti?

Težko. Seveda si pomagamo s prispodobami iz vsakdanjega sveta, predvsem, ko učimo kvantno fiziko, vendar je vse takšne analogije treba jemati z rezervo. Na primer znamenita Schrödingerjeva mačka, s katero ponazorimo princip kvantne superpozicije stanj mačke v povsem izolirani škatli s strupom, ki je lahko v vsoti stanj živa in mrtva hkrati. Problem tiči v naših čutilih, ki določajo naš predstavni svet. Vsa namreč temeljijo na makroskopskih pojavih, kjer so kvantni efekti že povsem ohromljeni zaradi pojava, ki mu pravimo dekoherenca. Po domače, zaradi nenehnega opazovanja velikega brata iz okolice.

Za običajno intuicijo ljudi so zakoni kvantne fizike dokaj nenavadni, kaj pa je v kvantni mehaniki tako zelo drugače?

Verjetno največji miselni paradoks je sama možnost obstoja superpozicij, t. j. dejstva, da je lahko kvantni sistem v več klasičnih stanjih hkrati. Npr. isti atom je lahko hkrati tu in tam, kvantna vrtavka se lahko hkrati vrti v dveh smereh. Možnost, da bi šlo zgolj za verjetnostno porazdelitev med več možnimi klasičnimi stanji izključimo z opazovanjem interference, podobno kot pri valovih. Npr. mala žogica v obliki molekule fuklerena, t. j. ogljika C60, gre lahko hkrati skozi več luknjic v mrežasti oviri, kar dokažejo tako, da lahko na zaslon oz. detektor prileti samo v točno določenih smereh. Podobno kot svetloba z zvezde, ki jo zvečer opazujemo iz spalnice skozi tkanino prosojnih zaves, ko namesto ene svetle pikice vidimo enakomeren mrežast vzorček interferenčnih pikic. Obstoj prepletenih kvantnih stanj pa omogoča npr. pojav kvantne teleportacije, nekaj precej podobnega kot v fantastični zgodbi StarTrek. Vendar kvantna teleportacija ni samo ideja, v zadnjih letih jo znajo v laboratorijih že realizirati. Npr. kvantna teleportacija je tudi način, kako kvantni računalnik prepisuje in transportira svoje kvantne podatke iz enega registra v drugega.

Kvantni računalniki bi lahko nekatere težke računske probleme rešili bistveno hitreje kot klasični. So tudi nekaj, kar po zakonih kvantne mehanike mora obstajati, vendar za zdaj obstaja le njihova miselna konstrukcija. Zakaj jih je tako težko zgraditi, realizirati?

No, ni čisto res, da so zgolj miselna konstrukcija. Obstajajo preprosti eksperimentalni modeli kvantih računalnikov, ki povsem splošno lahko manipulirajo (računajo) z nekaj kvantnimi biti. Obstaja tudi nekakšen hibridni model kvantnega računalnika, takoimenovani D-Wave One, ki računa celo s 128 kvantnimi biti. Vseeno pa so tehnološke težave pri konstrukciji kvantnih računalnikov zelo velike. V glavnem so povezane s tako-imenovano dekoherenco, t. j. porušitvijo kvantne koherence, zaradi pomanjkljive izolacije kvantnega računalnika od okolice. Popolna izolacija pa spet ni mogoča, ker moramo na koncu kvantnega računanja rezultat odčitati. Pravimo, da moramo kvantni register pomeriti. Tako smo prisiljeni v nekakšno kompromisno izolacijo, ki nam omogoča omejeno število kvantnih operacij, preden dehoherenca kvantni račun pokvari. A težave, čeprav so hude, niso principielne.

Kvantni računalnik ni digitalni računalnik, ampak je trenutno še vedno bolj podoben analognemu računalniku, ki si zgolj pomaga s kvantno fiziko. Kaj sploh pričakujemo od kvantnega računalnika, kakšne so njegove posebnosti in odlike?

Za zdaj ni jasno, ali bo kvantni računalnik sploh kdaj tako splošno uporaben, kot so ti, ki jih uporabljamo danes. Seznam algoritmov / postopkov, ki jih kvantni računalnik rešuje bistveno hitreje kot klasični, je še vedno precej kratek. Kvantni računalnik tudi redko izračuna točen rezultat, saj je na koncu potrebno takoimenovano kvantno merjenje pri katerem – po Einsteinu – Bog vrže kocko. Za točno utemeljitev rezultata je zato treba postopek izvajanja programa na kvantnem računalniku večkrat ponoviti, podobno kot pri nekakšnem verjetnostnem poskušanju. Ima pa kvantni računalnik bistveno prednost pred klasičnim verjetnostnim strojem: za določitev ene izmen N reči je potrebno v povprečju poskusiti samo koren iz N-krat, ne pa N-krat kot pri klasičnem verjetnostnem računu.

Če želite poiskati eno stvar v popolnoma razmetani sobi in je v njej tema, potem boste, če veljajo samo zakoni klasične fizike in če je v sobi sto reči, morali stokrat ali pa recimo petdesetkrat v povprečju na slepo potegniti neznani predmet iz sobe in pogledati, če je pravi, da boste našli pravega. Če pa imate informacijo o predmetih zakodirano v kvantnem računalniku, se zgodi, da bo treba to narediti le desetkrat, kar je koren iz stokrat. Kvantna mehanika v tem smislu je povsem neintuitivna, da omogoča takšne paradoksalne stvari.

Je to, da je neke vrste verjetnostni stroj, težava ali bolj filozofsko vprašanje?

Kot sem poskusil pojasniti malo prej, to ni resna težava. Razen tega, da to pač ni digitalni stroj in zato rezultat računa ni nikoli eksakten. Kar pa sploh ni problematično, pri problemih, katerih rešitev je sicer težko poiskati, preveriti – preveriti, če je rešitev prava, pa ni težko. Na primer znameniti problem osmih kraljic, ki jih moramo po šahovnici razporediti tako, da se med seboj ne napadajo. Ali pa vprašanje, ali se da veliko celo število zapisati kot produkt dveh manjših, a še vedno velikih celih števil. To je v kriptografiji posebnega pomena.

Zdi se, da je pomembna filozofska iztočnica vprašanje, ali je kvantni računalnik morda prva zares umetna tvorba, ki jo narava sama po sebi sicer zares še ne uporablja. Če nevronske sisteme višje razvitih živali in ljudi lahko razumemo kot nekakšne verjetnostne računalnike (zaradi šuma, v katerem delujejo in ki je pomemben za njihovo učinkovitost), pa se zdi, da koncepta kvantnega računalnika narava še ni zares izkoristila. Potemtakem bi bil kvantni računalnik prvi zares umeten tehnološki koncept.

Ali to pomeni, da nekega pomembnega dela narave ljudje še ne obvladujemo? Se ob tem pojavljajo tudi filozofski zadržki?

Vprašanje je, če morda ravno zaradi tega, ker narava še sama ni našla koristne uporabe kvantnega računanja, ne obstajajo tudi resnejši razlogi, da bi imel tudi človek ob tem nepremostljive težave. Ampak za zdaj ne poznamo zakona narave, ki bi nam preprečeval zasnovo učinkovitega kvantnega računalnika.

Imajo pričakovanja, da bomo kmalu dobili splošno uporabne stroje, ki bi v vsem prekašali klasične računalnike, že kakšno realno podlago?

Da in ne. Vprašanje je, kaj bi bilo za vas zadosti splošno uporabno. Zdi se, da bodo prvi kvantni računalniki predvsem simulatorji za druge fizikalne procese, ali pa bodo reševali diskretne optimizacijske probleme, npr. iskali optimalen sprehod po zemljevidu in podobno. Takšne vrste problemov naj bi npr. znal učinkovito reševati nedavno predstavljeni Dwave one.


16.05.2024

Učinkoviti altruizem med racionalnostjo in čustvi

Kako lahko naredim kar največ dobrega? Naj premišljeno doniram samo skrbno izbranim humanitarnim organizacijam ali naj se raje odločam čustveno in pomagam po trenutni inerciji? Pod drobnogled smo vzeli koncept učinkovitega altruizma, ki skuša pomagati na podlagi merljivih dokazov, hkrati pa je deležen tudi številnih kritik. Razpravljamo o različnih konceptih altruizma in dobrodelnosti, vlogi posameznika, države in korporacij.


09.05.2024

Prevare v znanosti: Od superjunaka do lažnivca

Ranga Dias z ameriške univerze Rochester je leta 2020 zaslovel, potem ko je v reviji Nature poročal o prvem superprevodniku pri sobni temperaturi. To je bil velikanski uspeh, eden izmed svetih gralov moderne fizike, ki je Diasu na široko odprl pot do Nobelove nagrade, svetu pa do učinkovitejše prihodnosti z manj izgubami energije. A danes vemo, da je za njegovim domnevnim odkritjem prevara in vrsta goljufij. Poneverbe podatkov v znanosti postajajo vse pogostejše, dodatno skrb vnaša sivo polje umetne inteligence, ki namesto znanstvenikov lahko piše tudi članke. Kako je z integriteto v znanosti, kako lahko vemo, kaj je res in kdo zavaja?


02.05.2024

Misliti velikost: Od liliputancev do velikanov

Potujemo v zgodovino našega planeta in odkrivamo največja in najmanjša bitja, ki so ga poseljevala. Zagrizemo tudi v iskanje odgovora, kakšen mojstrski kipar je narava, ki se je domislila človeka – ravno prav velikega sesalca z nadpovprečno velikimi možgani.


25.04.2024

Kaj bi Kant porekel o Chat GPT-ju in našem podnebnem ravnanju?

V ponedeljek je minilo 300 let od rojstva Immanuela Kanta, slovitega modreca iz Königsberga, ki je močno zaznamoval filozofijo. Kant velja za prvega sodobnega filozofa, njegovo delo pa presega meje časa in nam še vedno predstavlja prvovrstno oporo pri naslavljanju temeljnih vprašanj o našem obstoju, našem razumevanju in naši odgovornosti.


18.04.2024

Velike živalske migracije: Epsko popotovanje, ki v marsičem ostaja nepojasnjeno

Vsako leto se nad našimi glavami seli na milijarde ptic, žuželk, netopirjev; njihova epska potovanja povezujejo celine in niso imuna na vpliv človeka, ki je zadal velik udarec zlasti selitvam velikih sesalcev. Kdo so selivci rekorderji, kaj jih žene in kako najdejo svoj cilj?


10.04.2024

Stoletnica elektroencefalografije: "Mi na daleč prisluškujemo možganom"

“Prosimo vas, da zaprete oči, med preiskavo se tudi ne pogovarjamo.” To so začetne besede asistenta v ambulanti za merjenje električne dejavnosti možganov EEG, kamor se je tokrat, ob skorajšnji stoletnici prve meritve na človeku, povabila tudi Frekvenca X. Elektroencefalograf je naprava, ki jo je na človeku prvič uporabil nemški psihiater Hans Berger 6. julija 1924. Kljub svoji starosti se tehnologija do danes ni prav veliko spremenila, ob merjenju dejavnosti še vedno na glavo postavijo elektrode, ob pomoči katerih ugotavljajo mogoča odstopanja od normalne električne dejavnosti možganov. Pravzaprav jim “na daleč” prisluškujejo. In to so delali tudi, ko se je na Nevrološki kliniki pri vodji Centra za epilepsijo odraslih dr. Bogdanu Lorberju oglasila Maja Stepančič. Vabljeni torej na posebno zvočno izkušnjo, prisluškovali boste lahko preiskavi EEG.


04.04.2024

Oceani: Pregreti modri motor planeta

Če omenimo oceane, na kaj pomislite? Večina ljudi pomisli na ribe in na njihovo slanost …, na biologijo in kemijo morja torej. Toda tisto, kar res zaznamuje oceane, je njihova fizika.


28.03.2024

Znanost v marcu: Od ekstremofilnih gliv, anafilaksije, do fizikalne fotografije

Tokratna Frekvenca X se spet sprehaja po največjih ali najzanimivejših dosežkih meseca. Marec je mesec, ko naša oddaja praznuje rojstni dan, mesec, ko se podeljujejo Jesenkove nagrade; letos je nagrado za življenjsko delo prejela prof. dr. Nina Gunde Cimerman z biotehniške fakultete, ki bo tudi naša gostja. Poleg tega naj omenimo še nekaj novic iz sveta znanosti: govorili bomo o pomembni raziskavi Univerzitetne klinike za pljučne bolezni in alergijo Golnik v zvezi z anafilaksijo, povabili se bomo na pojedino zvezd, ki se hranijo tudi s planeti, in odgovorili na vprašanje, zakaj antropocen ne bo postal uradno poimenovanje dobe, v kateri ima največji vpliv na okolje človek.


22.03.2024

Frekvenca X pred občinstvom: Od orjakov do liliputancev

Je biti velik ali majhen v naravi prednost ali slabost? Kaj pa zares velik? Frekvenca X, poljudnoznanstvena oddaja Vala 202, svoj 15. rojstni dan praznuje s sebi enakimi. Pred mladim občinstvom in v čisto pravem radijskem studiu načenjamo temo velikosti in kako ta vpliva na ves živi svet okoli nas. Potujte z nami skozi zgodovino našega planeta in odkrijte največja bitja, ki so ga poseljevala. Kaj je pripomoglo k temu, da so po Zemlji nekoč lomastili megalomanski kuščarji in kako so se sploh premikali? Zakaj so kiti še dandanes tako ogromni in ali so orjaški pajki in kačji pastirji sploh mogoči? In kaj imata o fantazijskih bitjih, kot so leteči zmaji, krilati konji pegazi, palčki in velikani iz pripovedk, povedati fizika in biologija? Zagrizli pa bomo tudi v iskanje odgovora, kakšen mojstrski kipar je narava, ki se je domislila človeka – ravno prav velikega sesalca z nadpovprečno velikimi možgani. Kako se je z našo velikostjo igrala evolucija in do kod še lahko zrastemo? Kako bi živeli, če bi se nenadoma – kot Alica – povečali ali pomanjšali? Zaneslo pa nas bo tudi daleč stran v vesolje z misijo, da se domislimo planeta, na katerem bi lahko obstajali velikani.


21.03.2024

Tomaž Zwitter: Kot človeštvo smo spoznali, da smo manj in manj posebni

Preselimo se 15 let v preteklost, natančneje – odpotujemo v 9. april leta 2009, ko je Mija Škrabec Arbanas pripravila eno izmed prvih oddaj, ki so v Frekvenci X obravnavale vesolje. V tem času se je marsikaj spremenilo: od vse daljših sprehodov astronavtov zunaj vesoljskih postaj do napredka pri razvoju vesoljskih oblačil, ki omogočajo boljšo gibljivost, do raztrosa človeškega pepela v vesolju. 15-letni napredek v raziskovanju vesolja komentira naš dolgoletni strokovni sodelavec astronom in astrofizik Tomaž Zwitter.


21.03.2024

Roger Penrose: O modi, veri in fantaziji v fiziki

Gost v tokratni Frekvenci X je bil Roger Penrose, zelo eminentno ime svetovne matematične fizike, ki se ga velikokrat omenja v povezavi Stephenom Hawkingom. Penrose je v svoji dolgi karieri pomembno prispeval predvsem k teoriji splošne relativnosti, je pa tudi avtor tako imenovanih Penrose-Hawking teoremov o singularnostih, ki so mu prinesli Nobelovo nagrado in ki pravijo, da se črne luknje tvorijo iz zelo splošnih pogojev sesedanja materije ter da se v središču črne luknje ustvari singularnost v končnem času. V oddaji se z njim sprašujemo tudi, kaj je v sodobni fiziki moda, kaj vera in kaj fantazija, dotaknemo se tudi vprašanja, kako pri umetni inteligenci 'izračunati' razumevanje in kako enigmatična je fizika možganov.


14.03.2024

Pornografija, možgani in zasvojenost

Ob Tednu možganov, ki je letos posvečen spolnosti, raziskujemo odvisnost od pornografije, kakšni so simptomi, kaj se dogaja v naših možganih, zakaj je lahko izpostavljenost otrok in mladostnikov pornografiji problematična in kakšne dodatne nevarnosti je prinesel razmah sodobnih tehnologij. V skupni epizodi z oddajo Možgani na dlani na Prvem tudi o pozitivnih plateh rabe pornografije.


07.03.2024

Nevidni svet predorov

Ste vedeli, da bo na celotni progi drugega tira porabljenih za pet Eifflovih stolpov jeklenih armatur? Inženirji, gradbinci in izvajalci del pa seveda pri gradnji ne uporabljajo le kovinskih pripomočkov. Kakšna je znanost za gradnjo predorov, kako ti sploh nastanejo, kdo pri tem sodeluje in kje vse lahko strokovnjaki sploh kopljejo predore? V oddaji slišite tudi zvoke iz globin enega izmed slovenskih predorov.


29.02.2024

Znanost v februarju: O dinozavrih, anakondi, Hallersteinu in avtoimunskih boleznih

Februar je pri koncu in Frekvenca X njegove zadnje ure, ki so zaradi prestopnega leta pravzaprav bonus, izkorišča za prelet tem, ki so ta mesec odmevale v znanosti. Maja Ratej raziskuje avtoimunske bolezni in zakaj jih bomo lahko morda v dogledni prihodnosti uspešno zdravili. Preverila je tudi, kakšna velikanka je na novo odkrita anakonda v Južni Ameriki in koliko več vemo o dinozavrih 200 let po njihovem odkritju. Več pa tudi o tem, da se lahko v Ljubljani po novem pomudite pri Hallersteinovem zvezdnem opazovalniku, pa o ameriškem zasebnem naskoku na Luno, rasni genetiki in celo gensko spremenjenih bananah.


22.02.2024

Reportaža iz CERN-a: Kjer premikajo meje znanosti!

Pred kratkim smo se s Frekvenco X mudili v CERN-u, Evropski organizaciji za jedrske raziskave, v kateri se že 70 let ukvarjajo s trki osnovnih delcev. Gre za megalomansko raziskovalno območje na meji med Švico in Francijo v Ženevi, pod katerim je 27 kilometrov dolg Veliki hadronski trkalnik. V njem so, spomnimo, leta 2012 ob pomoči velikanskih detektorjev potrdili obstoj Higgsovega bozona. Trki, ki se z velikanskimi energijami in hitrostmi dogajajo v pospeševalniku, razkrivajo delovanje vesolja v njegovih prvih trenutkih, ob tem pa se poskušajo raziskovalci dokopati tudi do odgovorov na to, kaj bi utegnila biti temna snov in kako bolje spoznati antimaterijo.


14.02.2024

Človeška napaka

Če odgovorna oseba po hudi delovni nesreči javnost obvesti, da je bil vzrok tragičnega dogodka človeška napaka, nas takšno pojasnilo ne sme pomiriti, ampak nas mora še bolj vznemiriti. Skladno s sodobnimi smernicami za zagotavljanje varnosti, ki temeljijo na znanstvenih raziskavah, je človeška napaka sprejemljiv vzrok za razlago neželenega dogodka le v zelo redkih primerih. Po temeljiti preučitvi okoliščin nesreče se večinoma namreč izkaže, da je za napako kriva sistemska pomanjkljivost in ne nepozoren posameznik. Česa nas lahko naučijo človeške napake, kakšni psihološki in varnostni mehanizmi so v ozadju, kako je zdravniškimi napakami in kakšna bo vloga umetne inteligence?


01.02.2024

Znanost v januarju: O milnih mehurčkih, starodavni Amazoniji in napredku pri zdravljenju raka

Pred evropskim dnem boja proti raku Maja Ratej poizveduje o napredku pri diagnostiki in zdravljenju raka, zastavlja pa si tudi vprašanje, kakšno liso je na tem področju pustila koronavirusna doba. V januarski beri novic na področju znanosti jo zanimajo odmevno odkritje 2500 let starih ostankov kompleksa mest v Amazoniji in novi poskusi pošiljanja plovil na Luno. Za konec pod drobnogled vzame še raziskovalni dosežek slovenskih znanstvenikov, ki je januarja odmeval tudi v mednarodnem tisku o popularni znanosti, in sicer kako iz milnega mehurčka ustvariti natančen laser.


25.01.2024

Plavajoča mesta? Zakaj pa ne!

V zadnjih nekaj letih se v spletnih časopisih pogosto znajdejo članki o mestih, ki bodo krojila našo prihodnost bivanja. Trajnostno, zeleno, obnovljivi viri energije, javni prevoz, 15-minutno mesto, individualnost bomo zamenjali za skupnost … to so pogosto napovedi velikih arhitekturnih birojev, ki snujejo tako imenovana mesta prihodnosti. Mesta, ki bodo nasledila takšna, kot jih poznamo danes.


18.01.2024

Izkašljano in vročično: Naše telo kot uigran orkester v boju proti virusom

V delu leta, ko na nas od vsepovsod prežijo okužbe dihal, pri Frekvenci X opazujemo simfonijo našega telesa v boju zoper njih. Še posebej nas zanimajo vročina, kašelj in kihanje, nad katerimi bdijo različni možganski dirigenti.


11.01.2024

Prehranski Frankenstein: Skrajno predelana hrana

Povprečen posameznik v industrializiranih državah s hrano letno zaužije osem kilogramov aditivov, kupi pa le dva kilograma moke. Trend prehranjevanja, ki ga narekujeta pomanjkanje časa in velika količina priročnih, za takojšnje zaužitje pripravljenih živilskih izdelkov, gre namreč v smer, ko vedno manj obrokov pripravimo sami. Pri tem zaužijemo vedno več tako imenovane ultraprocesirane hrane, med katero spadajo čips, zamrznjena lazanja, sladke žitarice, rastlinske alternative za sir in meso in podobno. Kako taka hrana vpliva na naše telo in svet okoli nas? Kako jo prepoznati?


Stran 2 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov