Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Teorija relativnosti in nastanek črnih lukenj. dr. Jerome Novák z Observatorija Meudon pri Parizu

05.04.2012


Einsteinova splošna teorija relativnosti bo kmalu praznovala stoletnico. Einstein je že leta 1915 pokazal, da njegova teorija lahko pojasni opazovano sukanje točke, v kateri se planet Merkur najbolj približa Soncu.

Še bolj dramatična potrditev je bilo opazovanje premika zvezd, ki jih vidimo poleg Sonca ob popolnem Sončevem mrku. Angleška kraljeva družba je zato leta 1919 poslala odpravo na Papuo – Novo Gvinejo. Rezultati, ki so se popolnoma ujemali z Einsteinovimi napovedmi, so mu prinesli takojšnjo slavo.

Danes nam po potrditev napovedi teorije ni treba hoditi tja. Splošna relativnost vpliva na naše vsakdanje življenje in na razlage številnih pojavov v vesolju. Kar nekaj primerov, ki jih zdaj povzemamo,  nam je naštel naš gost, dr. Jerome Novak, raziskovalec v laboratoriju Vesolje in teorije pariškega observatorija v Meudonu.

V vesolju je primerov kar veliko, prvo je že vesolje samo in njegovo širjenje. Pred dobrimi 80 leti ga je odkril Edwin P. Hubble in to širjenje je mogoče  razložiti samo s splošno relativnostjo, Newtonova običajna teorija se temu ne prilagodi. S tem v zvezi je tudi pojav, ki se imenuje prasevanje. To je nekakšna prva slika vesolja, elektromagnetno valovanje, ki napolnjuje celotno vesolje. Odkrili so ga že v 60 letih.

Tudi to valovanje je v skladu s tem, kar predvideva teorija splošne relativnosti, in vse to kaže, da tudi zgodovine vesolja sploh ni mogoče razlagati brez Einsteinove teorije. Poleg celotnega vesolja pa poznamo tudi črne luknje ali nevtronske zvezde, ki imajo zelo močno gravitacijsko polje, in tudi teh ni mogoče opisati brez splošne relativnosti, še posebno opazovanja v visokih energijah elektromagnetnega valovanja, kot so rentgenski ali gama žarki.

Einsteinova teorija opisuje zelo močna gravitacijska polja, tako da  je na Zemlji, na kateri je to polje bolj šibko, Newtonova teorija po navadi dovolj točna. V  vsakdanjem življenju  pa je  splošna relativnost navzoča ob pomoči GPS. Premika teh satelitov, ki nam pošiljajo signale, se ne da dobro izračunati v sklopu Newtonove teorije. To pomeni, da bi bile napake položajev teh satelitov, izračunane v okviru Newtonove teorije, prevelike in bi povrhu tega s časom še rastle. To pomeni, da brez splošne relativnosti GPS (Global Positioning System) sploh ne bi deloval in ne bi mogli imeti točnih informacij.

Kljub skladnosti napovedi Einsteinove splošne teorije relativnosti z opazovanji pa jo fiziki ves čas z veliko vnemo preizkušajo. Preverjanje teorij je vedno pomembno; ni dovolj napisati teorijo, tudi če je lepa. Še več zanimanja  je zato, ker za zdaj ni mogoče združiti splošne relativnosti z drugo veliko teorijo fizike 20. stoletja − kvantno mehaniko. Težava je v tem, da nimamo nobenega točnega opisa kvantne gravitacije oziroma nobene teorije za kvantno gravitacijo. Ker teoretična zgradba ni jasna, je treba preizkusiti vse te teorije in tudi splošno relativnost – tako osnove kot podrobnosti – v vseh smereh. Tako fiziki skušajo  najti kakšno slabost ali namig,  kje iskati kvantno teorijo gravitacije.

Na prvi pogled se sicer zdi, da majhne spremembe ne bi smele imeti velikih posledic. Situacija je nekoliko podobna slavnemu, zdaj že rešenemu problemu glede hitrosti nevtrinov, za katere se je zdelo, da gredo malce hitreje od svetlobe in s tem rušijo naše razumevanje sveta.

Vendar so te majhne razlike  pogoste in seveda lahko privedejo do velikih teorij. Tudi teorijo splošne relativnosti je vzpodbudila majhna razlika med opazovanjem gibanja Merkurja in računanjem tega gibanja po Newtonovem zakonu.  Tudi majhna razlika, ki bi bila potrjena − ne tako kot pri nevtrinih, pri katerih se je pokazalo, da je bil problem nekako v meritvi sami − bi lahko, kar zadeva splošno relativnost, nakazovala novo znanstveno revolucijo. Ta mala razlika bi namreč pokazala, v kateri smeri je treba iskati razlago.

Naš gost dr. Jérôme Novak se je pred malo manj kot 40 leti rodil v Araraquari v Braziliji. Astrofiziko je študiral v Parizu in pred 14 leti doktoriral z delom, ki je z numeričnimi tehnikami obravnavalo izvore gravitacijskih valov. To so nihanja prostora, ki nastanejo ob dramatičnih dogodkih, kot so nastanek, zlivanje ali hitro kroženje črnih lukenj in zelo gostih zvezd.

Na podoktorskem izpopolnjevanju v Španiji je raziskoval računalniško modeliranje hidrodinamike v okviru splošne teorije relativnosti. Zdaj je raziskovalec v laboratoriju  Vesolje in teorije pariškega observatorija v Meudonu pri Parizu. Pred kratkim je obiskal raziskovalno skupino na fakulteti za matematiko in fiziko in predaval našim študentom o Einsteinovi splošni teoriji relativnosti in nastajanju črnih lukenj. To je bil tudi povod za naš današnji pogovor.

INTERVJU

Ko govorimo o splošni teoriji relativnosti, lahko rečemo, da nimamo tako izzivalne meritve, kot je bila tista, ki je privedla do trditve o nevtrinih, hitrejših od svetlobe. Pa vendar so v preteklih letih nekateri razmišljali o alternativnih razlagah s skupnim imenom modificirana Newtonova dinamika. Vaše nedavne raziskave so, če prav razumemo, pokazale, da take alternativne razlage niso skladne z gibanjem planetov v našem Osončju. Lahko na kratko razložite svoje in druge rezultate testiranj alternativnih razlag, tako v našem Osončju kot drugod?

Foto: LUTH

Ja, modificirana Newtonova dinamika je zelo uspešna teorija, kar zadeva opis gibanja zvezd okoli jeder galaksij. Po navadi se ljudje ob razlagi sklicujejo na temno snov, ki jo sestavljajo neznani delci in antidelci, ki jih na Zemlji nikakor ne moremo zaznati, niti v Cernu v pospeševalniku LHC (Large Hadron Collider). In ti delci, ki so navzoči v galaksijah, vplivajo na gibanje zvezd. Te se zato gibljejo drugače, kot bi pričakovali. V nasprotju s to sliko, povezano s temno snovjo neznanega izvora, pa modificirana Newtonova dinamika gibanje zvezd lahko razloži brez neznanih delcev, in to je zelo zanimivo. Žal pa smo dokazali, da ta teorija hkrati predvideva spremenjeno gibanje planetov okoli našega Sonca v primeri z Newtonovo teorijo ali tudi splošno relativnostjo. Te razlike je danes možno izmeriti in dani rezultati, predvsem za Jupiter ali Saturn, kažejo, da  predvidevanja modificirane Newtonove dinamike niso skladna z opazovanji. Kaže, da tej teoriji bolj slabo kaže, ali pa jo bo treba še enkrat spremeniti oziroma bolje premisliti. Modificirana Newtonova dinamika je alternativna teorija, ki skuša iti dlje od Newtonove teorije. So pa še druge alternativne teorije, ki so teoretično bolje utemeljene. Tako imenovana tenzorska skalarna teorija, znana tudi kot Brans-Dickova, je splošnejša od preostalih. To je zelo zanimivo, ker se da primerjati splošno relativnost z drugimi teorijami, ki so nekako v isti skupini. Različne teorije primerjajo tudi z drugimi meritvami. Tak preizkus je zelo točna  laserska meritev razdalje med Zemljo in Luno ali pa zelo točna časovna meritev gibanja para zelo zgoščenih zvezd z imenom pulzarji. Vse te meritve so pokazale, da je splošna relativnost najboljša teorija za gravitacijo. Za zelo točno časovno meritev gibanja dveh pulzarjev sta Hussel in Taylor dobila Nobelovo nagrado iz fizike za leto 1993 in s tem sta tudi pokazala, da je splošna relativnost zelo dobro sprejeta.

Preučujete tudi nastanek črnih lukenj. Gre za zelo dramatične dogodke. Vse  se dogaja izjemno hitro, razmere so zelo daleč od izkušenj, ki jih imamo s snovjo na Zemlji. Ste strokovnjak, ki je pomembno prispeval k razvoju računalniških programov za obravnavanje takih pojavov. Lahko pojasnite, v čem je prednost vašega pristopa?  

To je razmeroma nova tema. Začeli smo pred kakim letom in več. V glavnem skušamo razumeti, kako nastane črna luknja iz navadne zvezde – masivne, ampak običajne zvezde, kakršnih na nebu vidimo na stotine. Naš pristop ima dve prednosti. Intenzivno uporabljamo računalnike za skladno rešitev Einsteinovih enačb splošne relativnosti. Problem so namreč računske napake, ki lahko tako narastejo, da je rezultat popolnoma napačen. Matematično smo študirali nov zapis Einsteinovih enačb, ki dajo najstabilnejšo in najtočnejšo rešitev doslej. Lepo opišejo tudi nastanek črne luknje. To je prva prednost. Druga pa je, da pri opisu zvezde, ki se krči v črno luknjo, upoštevamo tudi nastanek novih delcev, kot so recimo pioni. Doslej so pri računih upoštevali samo protone, nevtrone in elektrone, čeprav vemo, da bi pri gostoti in temperaturi snovi, ki se seseda v črno luknjo, morali nastati tudi ti novi delci. To seveda vpliva na proces nastanka črne luknje in opis tega pojava.

Črne luknje v vesolju so danes realnost, potrjena z zelo raznovrstnimi opazovanji. Zato so realnost tudi situacije, ki so včasih sodile le v znanstveno fantastiko. Tako kot vemo, da obstajajo planeti, ki imajo po dve sonci, vemo tudi, da je smiselno razmišljati o vesoljski ladji, ki se bliža črni luknji. Kaj bi videli astronavti na krovu, kako na realnost vplivajo gole singularnosti, ki jih morda dopušča teorija?

Škoda je, da je to radijski intervju in da ne moremo pokazati nekaj slik. To so z računalnikom izračunane sintetične slike, ki kažejo, čemu je podobna črna luknja. Na kratko, na vesoljski ladji bi črno luknjo videli predvsem kot deformacijo zvezdnega ozadja, to se pravi tako, kot če bi bila med to ladjo in zvezdami velikanska leča. Z ladje bi bila zato slika teh zvezd videti deformirana. Če pa je po drugi strani v bližini črne luknje kaj plina, in to se v vesolju pogosto zgodi, ta plin potem pada v črno luknjo in astronavti bi videli, kako pada in pri tem žari. To je nekako slika tega dogodka. Teh primerov je bilo izračunanih že dovolj, da imamo dobro predstavo, kako se to dogaja.

Gola singularnost pa  je nekako to, kar je v črni luknji. Iz navadne črne luknje informacija sploh ne more. Gola singularnost pa bi bila točka, v kateri bi gostota in gravitacijsko polje hkrati postajali neskončno veliki. Te gole singularnosti teorija sicer dopušča, a ob tem tudi kaže, da niso stabilne. Zato bi gole singularnosti izginile, se razpršile ali pa postale črne luknje.

Za zdaj, kot pravi dr. Novak, jih v naravi verjetno ni. Če pa bi kdaj dokazali ali opazili golo singularnost, bi bilo to nekaj zelo čudnega. Ne bi bila deterministična, ne bi mogli predvideti, kakšna informacija prihaja iz te gole singularnosti. S tem je povezana tudi hipoteza kozmične cenzure. Ta hipoteza pravi, da v vesolju ne more biti  golih singularnosti. To je samo hipoteza ali predpostavka, ki ni dokazana. Za zdaj  kaže, da so gole singularnosti nestabilne in zato res ne morejo obstajati.

Najbrž ob črno luknjo zlepa ne bomo trčili, ker je  predaleč. Vendar razmišljanje o takih pojavih pomaga k boljšemu razumevanju razvoja vesolja in našega mesta v njem. To daje Einsteinovi splošni teoriji relativnosti dodatno, kulturno dimenzijo, hkrati pa ob zapletenih in za Zemljane neobičajnih konceptih raziskovalci brusijo pristope, ki so uporabni tudi drugje.

Tudi v Franciji  se pojavlja podoben trend kot pri nas − številni diplomanti in celo doktorji fizike naredijo uspešne kariere na popolnoma drugih področjih, od financ do vodenja podjetij. Matematika in fizika sta  v Franciji na prvem mestu in ju uporabljajo  za selekcijo elite že v srednji šoli, tako da ima veliko pomembnih menedžerjev matematično in  fizikalno kulturo.

Poleg financ se študenti usmerijo tudi drugam. Najbolj originalna sprememba področja se mu je zdela, ko je nekdanji   študent in doktorand v njegovi  skupini postal igralec pokra. Prehod od fizike vse do igranja pokra se mu vendarle zdi seveda malo prevelik.


Frekvenca X

692 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Teorija relativnosti in nastanek črnih lukenj. dr. Jerome Novák z Observatorija Meudon pri Parizu

05.04.2012


Einsteinova splošna teorija relativnosti bo kmalu praznovala stoletnico. Einstein je že leta 1915 pokazal, da njegova teorija lahko pojasni opazovano sukanje točke, v kateri se planet Merkur najbolj približa Soncu.

Še bolj dramatična potrditev je bilo opazovanje premika zvezd, ki jih vidimo poleg Sonca ob popolnem Sončevem mrku. Angleška kraljeva družba je zato leta 1919 poslala odpravo na Papuo – Novo Gvinejo. Rezultati, ki so se popolnoma ujemali z Einsteinovimi napovedmi, so mu prinesli takojšnjo slavo.

Danes nam po potrditev napovedi teorije ni treba hoditi tja. Splošna relativnost vpliva na naše vsakdanje življenje in na razlage številnih pojavov v vesolju. Kar nekaj primerov, ki jih zdaj povzemamo,  nam je naštel naš gost, dr. Jerome Novak, raziskovalec v laboratoriju Vesolje in teorije pariškega observatorija v Meudonu.

V vesolju je primerov kar veliko, prvo je že vesolje samo in njegovo širjenje. Pred dobrimi 80 leti ga je odkril Edwin P. Hubble in to širjenje je mogoče  razložiti samo s splošno relativnostjo, Newtonova običajna teorija se temu ne prilagodi. S tem v zvezi je tudi pojav, ki se imenuje prasevanje. To je nekakšna prva slika vesolja, elektromagnetno valovanje, ki napolnjuje celotno vesolje. Odkrili so ga že v 60 letih.

Tudi to valovanje je v skladu s tem, kar predvideva teorija splošne relativnosti, in vse to kaže, da tudi zgodovine vesolja sploh ni mogoče razlagati brez Einsteinove teorije. Poleg celotnega vesolja pa poznamo tudi črne luknje ali nevtronske zvezde, ki imajo zelo močno gravitacijsko polje, in tudi teh ni mogoče opisati brez splošne relativnosti, še posebno opazovanja v visokih energijah elektromagnetnega valovanja, kot so rentgenski ali gama žarki.

Einsteinova teorija opisuje zelo močna gravitacijska polja, tako da  je na Zemlji, na kateri je to polje bolj šibko, Newtonova teorija po navadi dovolj točna. V  vsakdanjem življenju  pa je  splošna relativnost navzoča ob pomoči GPS. Premika teh satelitov, ki nam pošiljajo signale, se ne da dobro izračunati v sklopu Newtonove teorije. To pomeni, da bi bile napake položajev teh satelitov, izračunane v okviru Newtonove teorije, prevelike in bi povrhu tega s časom še rastle. To pomeni, da brez splošne relativnosti GPS (Global Positioning System) sploh ne bi deloval in ne bi mogli imeti točnih informacij.

Kljub skladnosti napovedi Einsteinove splošne teorije relativnosti z opazovanji pa jo fiziki ves čas z veliko vnemo preizkušajo. Preverjanje teorij je vedno pomembno; ni dovolj napisati teorijo, tudi če je lepa. Še več zanimanja  je zato, ker za zdaj ni mogoče združiti splošne relativnosti z drugo veliko teorijo fizike 20. stoletja − kvantno mehaniko. Težava je v tem, da nimamo nobenega točnega opisa kvantne gravitacije oziroma nobene teorije za kvantno gravitacijo. Ker teoretična zgradba ni jasna, je treba preizkusiti vse te teorije in tudi splošno relativnost – tako osnove kot podrobnosti – v vseh smereh. Tako fiziki skušajo  najti kakšno slabost ali namig,  kje iskati kvantno teorijo gravitacije.

Na prvi pogled se sicer zdi, da majhne spremembe ne bi smele imeti velikih posledic. Situacija je nekoliko podobna slavnemu, zdaj že rešenemu problemu glede hitrosti nevtrinov, za katere se je zdelo, da gredo malce hitreje od svetlobe in s tem rušijo naše razumevanje sveta.

Vendar so te majhne razlike  pogoste in seveda lahko privedejo do velikih teorij. Tudi teorijo splošne relativnosti je vzpodbudila majhna razlika med opazovanjem gibanja Merkurja in računanjem tega gibanja po Newtonovem zakonu.  Tudi majhna razlika, ki bi bila potrjena − ne tako kot pri nevtrinih, pri katerih se je pokazalo, da je bil problem nekako v meritvi sami − bi lahko, kar zadeva splošno relativnost, nakazovala novo znanstveno revolucijo. Ta mala razlika bi namreč pokazala, v kateri smeri je treba iskati razlago.

Naš gost dr. Jérôme Novak se je pred malo manj kot 40 leti rodil v Araraquari v Braziliji. Astrofiziko je študiral v Parizu in pred 14 leti doktoriral z delom, ki je z numeričnimi tehnikami obravnavalo izvore gravitacijskih valov. To so nihanja prostora, ki nastanejo ob dramatičnih dogodkih, kot so nastanek, zlivanje ali hitro kroženje črnih lukenj in zelo gostih zvezd.

Na podoktorskem izpopolnjevanju v Španiji je raziskoval računalniško modeliranje hidrodinamike v okviru splošne teorije relativnosti. Zdaj je raziskovalec v laboratoriju  Vesolje in teorije pariškega observatorija v Meudonu pri Parizu. Pred kratkim je obiskal raziskovalno skupino na fakulteti za matematiko in fiziko in predaval našim študentom o Einsteinovi splošni teoriji relativnosti in nastajanju črnih lukenj. To je bil tudi povod za naš današnji pogovor.

INTERVJU

Ko govorimo o splošni teoriji relativnosti, lahko rečemo, da nimamo tako izzivalne meritve, kot je bila tista, ki je privedla do trditve o nevtrinih, hitrejših od svetlobe. Pa vendar so v preteklih letih nekateri razmišljali o alternativnih razlagah s skupnim imenom modificirana Newtonova dinamika. Vaše nedavne raziskave so, če prav razumemo, pokazale, da take alternativne razlage niso skladne z gibanjem planetov v našem Osončju. Lahko na kratko razložite svoje in druge rezultate testiranj alternativnih razlag, tako v našem Osončju kot drugod?

Foto: LUTH

Ja, modificirana Newtonova dinamika je zelo uspešna teorija, kar zadeva opis gibanja zvezd okoli jeder galaksij. Po navadi se ljudje ob razlagi sklicujejo na temno snov, ki jo sestavljajo neznani delci in antidelci, ki jih na Zemlji nikakor ne moremo zaznati, niti v Cernu v pospeševalniku LHC (Large Hadron Collider). In ti delci, ki so navzoči v galaksijah, vplivajo na gibanje zvezd. Te se zato gibljejo drugače, kot bi pričakovali. V nasprotju s to sliko, povezano s temno snovjo neznanega izvora, pa modificirana Newtonova dinamika gibanje zvezd lahko razloži brez neznanih delcev, in to je zelo zanimivo. Žal pa smo dokazali, da ta teorija hkrati predvideva spremenjeno gibanje planetov okoli našega Sonca v primeri z Newtonovo teorijo ali tudi splošno relativnostjo. Te razlike je danes možno izmeriti in dani rezultati, predvsem za Jupiter ali Saturn, kažejo, da  predvidevanja modificirane Newtonove dinamike niso skladna z opazovanji. Kaže, da tej teoriji bolj slabo kaže, ali pa jo bo treba še enkrat spremeniti oziroma bolje premisliti. Modificirana Newtonova dinamika je alternativna teorija, ki skuša iti dlje od Newtonove teorije. So pa še druge alternativne teorije, ki so teoretično bolje utemeljene. Tako imenovana tenzorska skalarna teorija, znana tudi kot Brans-Dickova, je splošnejša od preostalih. To je zelo zanimivo, ker se da primerjati splošno relativnost z drugimi teorijami, ki so nekako v isti skupini. Različne teorije primerjajo tudi z drugimi meritvami. Tak preizkus je zelo točna  laserska meritev razdalje med Zemljo in Luno ali pa zelo točna časovna meritev gibanja para zelo zgoščenih zvezd z imenom pulzarji. Vse te meritve so pokazale, da je splošna relativnost najboljša teorija za gravitacijo. Za zelo točno časovno meritev gibanja dveh pulzarjev sta Hussel in Taylor dobila Nobelovo nagrado iz fizike za leto 1993 in s tem sta tudi pokazala, da je splošna relativnost zelo dobro sprejeta.

Preučujete tudi nastanek črnih lukenj. Gre za zelo dramatične dogodke. Vse  se dogaja izjemno hitro, razmere so zelo daleč od izkušenj, ki jih imamo s snovjo na Zemlji. Ste strokovnjak, ki je pomembno prispeval k razvoju računalniških programov za obravnavanje takih pojavov. Lahko pojasnite, v čem je prednost vašega pristopa?  

To je razmeroma nova tema. Začeli smo pred kakim letom in več. V glavnem skušamo razumeti, kako nastane črna luknja iz navadne zvezde – masivne, ampak običajne zvezde, kakršnih na nebu vidimo na stotine. Naš pristop ima dve prednosti. Intenzivno uporabljamo računalnike za skladno rešitev Einsteinovih enačb splošne relativnosti. Problem so namreč računske napake, ki lahko tako narastejo, da je rezultat popolnoma napačen. Matematično smo študirali nov zapis Einsteinovih enačb, ki dajo najstabilnejšo in najtočnejšo rešitev doslej. Lepo opišejo tudi nastanek črne luknje. To je prva prednost. Druga pa je, da pri opisu zvezde, ki se krči v črno luknjo, upoštevamo tudi nastanek novih delcev, kot so recimo pioni. Doslej so pri računih upoštevali samo protone, nevtrone in elektrone, čeprav vemo, da bi pri gostoti in temperaturi snovi, ki se seseda v črno luknjo, morali nastati tudi ti novi delci. To seveda vpliva na proces nastanka črne luknje in opis tega pojava.

Črne luknje v vesolju so danes realnost, potrjena z zelo raznovrstnimi opazovanji. Zato so realnost tudi situacije, ki so včasih sodile le v znanstveno fantastiko. Tako kot vemo, da obstajajo planeti, ki imajo po dve sonci, vemo tudi, da je smiselno razmišljati o vesoljski ladji, ki se bliža črni luknji. Kaj bi videli astronavti na krovu, kako na realnost vplivajo gole singularnosti, ki jih morda dopušča teorija?

Škoda je, da je to radijski intervju in da ne moremo pokazati nekaj slik. To so z računalnikom izračunane sintetične slike, ki kažejo, čemu je podobna črna luknja. Na kratko, na vesoljski ladji bi črno luknjo videli predvsem kot deformacijo zvezdnega ozadja, to se pravi tako, kot če bi bila med to ladjo in zvezdami velikanska leča. Z ladje bi bila zato slika teh zvezd videti deformirana. Če pa je po drugi strani v bližini črne luknje kaj plina, in to se v vesolju pogosto zgodi, ta plin potem pada v črno luknjo in astronavti bi videli, kako pada in pri tem žari. To je nekako slika tega dogodka. Teh primerov je bilo izračunanih že dovolj, da imamo dobro predstavo, kako se to dogaja.

Gola singularnost pa  je nekako to, kar je v črni luknji. Iz navadne črne luknje informacija sploh ne more. Gola singularnost pa bi bila točka, v kateri bi gostota in gravitacijsko polje hkrati postajali neskončno veliki. Te gole singularnosti teorija sicer dopušča, a ob tem tudi kaže, da niso stabilne. Zato bi gole singularnosti izginile, se razpršile ali pa postale črne luknje.

Za zdaj, kot pravi dr. Novak, jih v naravi verjetno ni. Če pa bi kdaj dokazali ali opazili golo singularnost, bi bilo to nekaj zelo čudnega. Ne bi bila deterministična, ne bi mogli predvideti, kakšna informacija prihaja iz te gole singularnosti. S tem je povezana tudi hipoteza kozmične cenzure. Ta hipoteza pravi, da v vesolju ne more biti  golih singularnosti. To je samo hipoteza ali predpostavka, ki ni dokazana. Za zdaj  kaže, da so gole singularnosti nestabilne in zato res ne morejo obstajati.

Najbrž ob črno luknjo zlepa ne bomo trčili, ker je  predaleč. Vendar razmišljanje o takih pojavih pomaga k boljšemu razumevanju razvoja vesolja in našega mesta v njem. To daje Einsteinovi splošni teoriji relativnosti dodatno, kulturno dimenzijo, hkrati pa ob zapletenih in za Zemljane neobičajnih konceptih raziskovalci brusijo pristope, ki so uporabni tudi drugje.

Tudi v Franciji  se pojavlja podoben trend kot pri nas − številni diplomanti in celo doktorji fizike naredijo uspešne kariere na popolnoma drugih področjih, od financ do vodenja podjetij. Matematika in fizika sta  v Franciji na prvem mestu in ju uporabljajo  za selekcijo elite že v srednji šoli, tako da ima veliko pomembnih menedžerjev matematično in  fizikalno kulturo.

Poleg financ se študenti usmerijo tudi drugam. Najbolj originalna sprememba področja se mu je zdela, ko je nekdanji   študent in doktorand v njegovi  skupini postal igralec pokra. Prehod od fizike vse do igranja pokra se mu vendarle zdi seveda malo prevelik.


04.12.2014

Iz take smo snovi kot zvezde

Profesor Martin Asplund je vodilni svetovni strokovnjak za preučevanje kemične sestave vesolja, kot ga vidimo v zvezdah naše Galaksije. Je prvi, ki je natančno določil kemično sestavo Sonca – naše domače zvezde, ki jo najbolje poznamo -, vendar se je v zadnjem desetletju pokazalo, da je njegova kemična sestava drugačna, kot smo mislili dotlej. Kako velike so te razlike in zakaj je do njih prišlo? Iz česa so zvezde, kako natančno je znanje o tem in zakaj nas to zanima? Odgovore boste zvedeli v tokratni astronomski Frekvenci X. Oddajo pripravljamo v sodelovanju s prof.dr. Tomažem Zwittrom.


19.11.2014

Kako se ljudje razlikujemo od živali

Ljudje smo seveda kompleksna živa bitja z zelo jasno izdelanimi preživetvenimi modeli. V nekaj tisočletjih hitrega razvoja smo ustvarili kompleksno civilizacijo, ki omogoča učinkovito globalno sodelovanje in hitro izmenjavo idej. A kaj konkretno je tista bistvena lastnost, ki nam je omogočila, da smo postali uspešnejši kot katera koli druga žival na planetu?


13.11.2014

Bitka z mikrobi

Z mikrobi se družimo vsak dan in to domala na slehernem mestu. Še več, v svojem telesu nosimo nekajkrat več mikroorganizmov, kot je naših celic! Dolgo časa so na Zemlji kraljevali sami in so po mnenju dr. Davida Stoparja z Biotehniške fakultete v Ljubljani najbolje prilagojena bitja za življenje na njej, ki nas bodo najverjetneje tudi preživela. V tokratni Frekvenci smo se podali v mikro svet mikrobov, šteli do 1031, koliko naj bi jih bilo po nekaterih ocenah na planetu, in ob primeru ebole ugotavljali, kako (ne)uspešni smo lahko v boju z njimi.


06.11.2014

Misija Rosetta

Po več kot deset let trajajoči odisejadi vesoljske sonde Rosetta 12. novembra pričakujemo spust pristajalnega modula Philae na komet Čurjumov-Gerasimenko. Gre za eno najbolj zapletenih vesoljskih nalog doslej.


30.10.2014

Biološki fitnes - dr. Simona Kralj Fišer

Izbira spolnega in /ali življenjskega partnerja je ključnega pomena za ohranjanje genov skozi evolucijo, za boljši biološki fitnes človeka, ki ga merimo po tem, koliko potomcev, ki preživijo do spolne zrelosti, ima posameznik.


22.10.2014

Bioelektronika: dr. Stewart Smith

Ob skokovitem razvoju elektronike in napredku v biologiji znanstveniki in tehnologi zadnja leta vse bolj razmišljajo, kako bi lahko ustvarili čim večjo sinergijo med elektronskimi napravami in telesom. V naslednjem desetletju bi lahko z združitvijo elektronskih naprav in biologije na primer povrnili vid ali pozdravili poškodbe hrbtenjače, z mikročipi pa opravljali hitre diagnoze. Gost je dr. Stewart Smith z Univerze v Edinbourghu.


16.10.2014

Eksperiment: Kaj sproža ugodje

Zakaj bi nekdo šel na koncert tišine v izvedbi vrhunskega orkestra, zakaj bi zbirali prazne listke znanih oseb ali si navdušeno ogledovali nek prazen prostor? Raziskujemo, zakaj nam lahko nek dogodek ali predmet v ustreznem kontekstu sproži neverjetno ugodje. Pomembno je tudi naše predhodno vedenje in pričakovanje, ki dogodek vnaprej klasificira in označi. Gostimo uglednega ameriškega psihologa prof. Paula Blooma in slovenskega slikarja Arjana Pregla, ki v svoja dela vključuje tudi družbeni kontekst. Z vrhunskim violinistom Milkom Jurečičem v središču Ljubljane preverjamo, kaj vpliva na ugodje mimoidočih in njihovo dobrodušnost …


09.10.2014

Nobelove nagrade dobijo ...

Smo v tednu razglasitev letošnjih Nobelovih nagrad. V ponedeljek so razglasili nagrajence na področju medicine, in sicer za odkritje sistema pozicioniranja v možganih, tako imenovanega “notranjega GPS sistema”, ki človeku omogoča orientacijo v prostoru. Letošnjo Nobelovo nagrado na področju fizike je prinesel izum modrih LED diod, nagrajenci na področju kemije pa so prestižno nagrado dobili za razvoj na področju fluoroscenčne mikroskopije. Zakaj so ti izumi pomembni, razpravljamo s strokovnjaki na izbranih področjih


02.10.2014

Med zvezdami naše galaksije

Mednarodna skupina astronomov pod vodstvom Janeza Kosa in prof.Tomaža Zwittra s Fakultete za matematiko in fiziko v Ljubljani je nedavno v prestižni reviji Science objavila članek, v katerem so prvič raziskali porazdelitev medzvezdnih oblakov makromolekul v prostoru med zvezdami naše galaksije in problematiko medzvezdnih absorbcijskih pasov neznanega izvora. Gre za pomemben gradnik pri iskanju odgovorov na vprašanja: v kakšnem vesolju smo in kaj je tu okrog nas, iz česa nastanejo nove zvezde, kako se ta material zgosti v nove predmete in nove planete.


25.09.2014

Noč raziskovalcev

Če še tehtate, kam se podati, pripravljamo nekaj namigov za vas. Od tega, da spoznate avtonomnega robota, ki zmore čuda reči, do potovanja v skrivnostne globine vesolja. Raziskovalci bodo v petek tudi razkrili, katera jabolka ekološke pridelave so najboljša, in nas pospremili med stene umetnih krvnih žil prihodnosti. Za piko na “i” pa smo pred petkovim odprtjem obiskali tudi razstavo o tem, kako si je slovenska znanstvena domišljija zamislila sedmi del Vojne zvezd.


18.09.2014

Oliver Smithies, nobelov nagrajenec

Nobelov nagrajenec, Britanec Oliver Smithies, ki je to prestižno nagrado za znanstvene dosežke prejel leta 2007 za prelomna odkritja na področju matičnih celic in rekombinantne DNK. Čeprav že 89-leten, iz njega še vedno izžareva otroško navdušenje nad eksperimenti.


21.08.2014

Rosetta ESA

Evropska vesoljska sonda Rosetta je pred kratkim po desetih letih potovanja ujela drveči komet Čurjumov-Gerasimenko in kot prvo vesoljsko plovilo v zgodovini tovrstnih raziskovanj kroži okrog njega, dokler se mu ne bo novembra toliko približala, da bo nanj poslala robota. Rosetta je komet, ki se premika s hitrostjo 55 tisoč kilometrov na uro, ujela več kot 400 milijonov kilometrov stran od nas.


24.06.2014

RNK terapija - izklapljanje genov

Znanstveniki se zadnja leta navdušujejo nad osupljivimi sposobnostmi in prezrtim pomenom biološke molekule, za katero je veljalo, da igra v delovanju naših celic stransko vlogo. Drobcene molekule, ki so sprožile pravo renesanso v genetiki, obenem pa obljubljajo tudi napredek v medicini, slišijo na ime ribonukleinske kisline ali krajše RNK. Če vam je ta kratica znana, je to zato, ker imajo podobno ime kot njihova veliko bolj slavna sorodnica – kraljeva molekula DNK.


19.06.2014

Einsteinova žena

O enem najslavnejših genijev 20-ega stoletja, ki je postavil temelje moderni fiziki, Albertu Einsteinu, ste bržkone že veliko slišali, v tokratni oddaji pa odstiramo tisto razsežnost njegovega življenja, ki je javnosti manj znana. Einstein je v svojem najbolj ustvarjalnem obdobju živel in deloval v tesni navezi s svojo ženo, prav tako matematičarko in fizičarko – Milevo Marić, rojeno v bližini Novega Sada.


19.06.2014

Einsteinova žena

O enem najslavnejših genijev 20-ega stoletja, ki je postavil temelje moderni fiziki, Albertu Einsteinu, ste bržkone že veliko slišali, v tokratni oddaji pa odstiramo tisto razsežnost njegovega življenja, ki je javnosti manj znana. Einstein je v svojem najbolj ustvarjalnem obdobju živel in deloval v tesni navezi s svojo ženo, prav tako matematičarko in fizičarko – Milevo Marić, rojeno v bližini Novega Sada.


12.06.2014

Prihodnjost vesoljskih raziskav

Tokrat o prihodnosti vesoljskih raziskav, ki postajajo vse bolj vznemirljive in zanimive. Tehnologija namreč zelo napreduje, zasuki so nepričakovani in zelo uspešni. Frekvenca X s prof. Dr. Tomažem Zwittrom in Mijo Škrabec Arbanas.


05.06.2014

Otroci s tremi starši

Otroci s tremi biološkimi starši? Morda se sliši strašljivo, a gre za postopek, ki bi preprečil dedni prenos bolezni in tako obudil upanje mnogih družin, ki se spopadajo z genetskimi obolenji. Zanima nas predvsem, ali sta tehnologija in znanost že dovolj razviti, da bi bilo mogoče presaditev mitohondrijev uporabiti v klinični praksi; katere genetske bolezni bi bilo mogoče s tem preprečiti, kako pogoste so te bolezni in kako je z etičnimi vprašanji ter pomisleki? Naš gost je prof. Doug Turnbull z univerze v Newcastlu.


29.05.2014

Spanje pri izmenskih delavcih

Raziskovalci na univerzi Penn so mišim preprečili naravno spanje in so jim simulirali spalni ritem. Rezultati so pokazali, da so miši že po treh dneh izgubile 25 odstotkov nevronov, ki so zadolženi za pozornost. Profesorica Sigrid Veasey meni, da se podoben učinek lahko pojavi tudi pri ljudeh, ki delajo v izmenskem delu.


22.05.2014

Denisovani

Leta 2008 so v neki Sibirski jami odkrili ostanke človečnjakov, ki so sobivali z neandertalci in se pomešali v našo vrsto. Poimenovali so jih po jami. Zdaj so to – Denisovani. Ko je predhodnik človeka zapustil Afriko, so na Zemlji tako živele vsaj štiri vrste človečnjakov. Kaj pomeni odkritje nove vrste, bo razložil dr. Bence Viola z Inštituta Maxa Plancka.


15.05.2014

Izbruhi gama žarkov - Dr. Drejc Kopač

Izbruhi žarkov gama se - gledano statistično - pojavljajo enkrat na dan, verjetnost, da bi se zgodili v naši galaksiji, pa je precej majhna, kar je dobro, saj bi tako močna eksplozija relativno blizu nas lahko poškodovala zgornje plasti atmosfere in uničila ozonsko plast, kar bi gotovo negativno vplivalo na življenje na Zemlji. Gre za najmočnejše eksplozije v vesolju po velikem poku. Teh spektakularnih dogodkov pred dvajsetimi leti niti približno nismo razumeli, zdaj pa se slika sestavlja. Nov pogled v območje nastanka izbruhov in na razumevanje, kaj se dogaja v samem izvoru izbruha sevanja gama, je odkrila raziskava, pri kateri sodeluje tudi mladi astrofizik dr. Drejc Kopač, gost tokratne Frekvence X.


Stran 23 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov