Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Davno srečanje temne zvezde in sonca

05.03.2015

V znanosti so odkritja le redko plod naključja, na drugi strani pa nikoli ni mogoče vedeti vnaprej, kaj boste odkrili. Tako je lani dr. Ralf Scholz iz Potsdama odkril zelo temno zvezdo v bližini našega Sonca, ki so jo kmalu poimenovali Scholzeva zvezda. Profesor Eric Mamajek (izg.:Memedžek), ki je eden največjih strokovnjakov za preučevanje okolice našega Sonca, pa je odkril, da je ta zvezda pred 70 tisoč leti potovala relativno blizu Sonca in je v tem pogledu naša doslej najbližja poznana obiskovalka. S profesorjem Mamajekom se bomo pogovarjali o njegovem odkritju in o vplivu takih mimoletov na komete v našem Osončju, pa seveda, kdaj si lahko obetamo, da bomo morebitne bodoče zvezdne obiskovalce poznali vnaprej.

V znanosti so odkritja le redko plod naključja, na drugi strani pa nikoli ni mogoče vedeti vnaprej, kaj boste odkrili. Tako je lani dr. Ralf Scholz iz Potsdama odkril zelo temno zvezdo v bližini našega Sonca, ki so jo kmalu poimenovali Scholzeva zvezda. Profesor Eric, ki je eden največjih strokovnjakov za preučevanje okolice našega Sonca, pa  je odkril, da je ta zvezda pred 70 tisoč leti potovala relativno blizu Sonca in je v tem pogledu naša doslej najbližja poznana obiskovalka. S profesorjem Mamajekom smo se pogovarjali o njegovem odkritju in o vplivu takih mimoletov na komete v našem Osončju, pa seveda, kdaj si lahko obetamo, da bomo morebitne bodoče zvezdne obiskovalce poznali vnaprej.

 INTERVJU: Tomaž Zwitter

Z menoj je profesor Tomaž Zwitter, ki nas bo vpeljal v današnjo temo. Zvezd, kot vemo, je izjemno veliko in mislili bi si, da srečanje dveh ni nič omembe vrednega. Je torej to kaj posebnega?

Zvezd je seveda veliko, samo v naši galaksiji jih je več kot sto milijard, vendar je veliko tudi vesolje. Zvezde so v resnici zelo daleč narazen. Če bi velikost našega Sonca pomanjšali na velikost pomaranče, bi bila trenutno najbližja zvezda mandarina na Kanarskih otokih. Med njima je očitno veliko praznega prostora in ni prav verjetno, da bi se naša pomaranča s to mandarino kdaj srečala. Profesor Mamajek pa je odkril, da nekoliko bolj stran obstaja zvezda, ki bi bila v našem pomanjšanem merilu frnikola na NoviZelandiji in se giblje skoraj natankov smeri, ki vodi stran od nas. Iz tega je izračunal, da je nekdaj letela približno na razdalji od Ženeve od Ljubljane. To je seveda kar daleč, če pomislimo, da bi bila v tem merilu razdalja milimeter velike Zemlje od za pomarančo velikega Sonca le 15 metrov. Vseeno pa je morda zmotila kakšen komet, ki ždi tam zunaj, in ga pognala proti Soncu. Predvsem pa je odkritje profesorja Mamajeka zanimivo zato, ker zdaj vemo, da se taka srečanja res dogajajo.

Astronomi radi omenjajo zelo velike številke.Čas radi merite v tisočletjih ali milijonih let.

prof. dr. Tomaž Zwitter

foto: Val 202

Se da ta mimolet Scholzeve zvezde ponazoriti s kakšno bolj zemeljsko primerjavo?

Seveda. Profesor Mamajek je opazoval zvezde v okolici Sonca. Zvezde lahko pri tem zamenjamo z lučjo motorista, sebe pa s pešcem, ki ponoči prečka cesto. Če opazite luč motorja, ki se pomika vstran, vas to ne skrbi, saj bo šel mimo. Če pa opazite žaromet, ki se ne premika, sklepate, da gre motorist točno proti vam in morate biti previdni. Profesor Mamajek je opazil zvezdo, pri kateri– če uporabimo prispodobo z motoristom – vidimo rdečo luč in njegovo oddaljevanje lahko potrdimo tudi z radarjem, torej je že šel mimo nas. Ker pa je motorist še vedno v bližini in se ne premika prečno, lahko sklepamo, da je naša zvezda šla precej blizu.

Je bilo to odkritje slučajno ali plod načrtnega dela?

V znanosti so odkritja redko le plod naključja, na drugi strani pa skoraj nikoli ne veste vnaprej, kaj boste odkrili. Profesor Mamajek je eden največjih svetovnih strokovnjakov za preučevanje okolice našega Sonca. Nedavno je na primer odkril več doslej neznanih skupin mladih zvezd v naši bližini. Na zvezdo, za katero je zdaj jasno, da je nekoč letela mimo nas, je lani postal pozoren dr. Scholz, saj je ugotovil, da je razmeroma blizu in se prečno skoraj ne premika. Torej je nekoliko podobna našemu motoristu. Profesor Mamajek je potem uporabil teleskopa v Čilu in Južni Afriki in ugotovil, da Dopplerjev premik njene svetlobe, podobno kot pri radarju, kaže, da se zvezda oddaljuje. Odkritje je torej plod načrtnega dela, vendar profesor Mamajek ni vnaprej vedel, ali se zvezda približuje, oddaljuje ali pa morda le miruje, tako kot motorist, ki bi stal s prižgano lučjo.

Hvala, prof. Zwitter za slikovite primerjave. 

foto: Michael Osadciw / University of Rochester

INTERVJU: Eric Mamajek

Erica Mamajeka, izrednega profesorja za fiziko in astronomijo smo poklicali na univerzo Rochester v New Yorku. Profesor Mamajek, pred dvema tednoma ste objavili odkritje, da je pred 70 tisoč leti ena od zvezd iz okolice Sonca letela mimo zelo blizu nas. Kako blizu je letela in kako to veste?

Zvezda se nam je približala na 8 desetin svetlobnega leta, to je približno 52-tisočkrat toliko, kot je razdalja med Zemljo in Soncem. Kako to vemo? Zvezdo je lani odkril nemški astronom Ralf Dieter Scholz iz Potsdama. Izmerili smo njeno hitrost. Če primerjate hitrost oddaljevanja te zvezde in njeno gibanje po nebu v prečni smeri ter dodate še njen položaj in razdaljo, lahko izračunate njeno hitrost v vseh treh smereh. Potem račun, ki upošteva tudi gibanje Sonca in privlak preostalih teles v naši Galaksiji, pokaže naravo tirnice te zvezde, ki jo je v preteklosti peljala zelo blizu Sonca. Seveda je pri tem treba upoštevati tudi negotovost meritev. Tako mislimo, da je letela mimo nas pred 70 tisoč leti, lahko pa tudi 10 ali 15 tisoč let prej ali pozneje.

Ima ta Scholzeva zvezda kakšne nenavadne lastnosti?

Ta zvezda ima zelo majhno maso. Je prav na spodnji meji količine snovi, ki jo mora imeti zvezda, da lahko še sprošča energijo s spajanjem vodika v svoji sredici. Njena spremljevalka, rjava pritlikavka, ima še manj snovi in je nekakšna ponesrečena zvezda. Scholzeva zvezda je torej dvojna: količina snovi v eni od zvezd komaj zadostuje za to, da se vodik lahko spaja v helij, pri drugi, ki jo imenujemo rjava pritlikavka, pa ta reakcija ne more potekati. Masi teh zvezd sta osem in šest odstotkov mase našega Sonca.

Pred 70 tisoč leti so se moderni ljudje selili iz Afrike, Evrazijo pa so naseljevali naši sorodniki iz vrste homo erectus, pokončni človek. Je mogoče, da je kdo od naših prednikov videl mimolet te zvezde, ali je bila izgubljena med številnimi temnimi pikami na nebu, ki jih brez sodobnih optičnih naprav ni mogoče opazovati?

Scholzeva zvezda je zelo temna. Mi astronomi to izražamo v magnitudah, ki jih zdaj ne bi razlagal, lahko pa omenim, da ima ta zvezda trenutno 18-to magnitudo. Torej je več kot 10-tisočkrat temnejša od tistih, ki jih še lahko vidimo s prostim očesom. Ko nam je bila pred 70 tisoč leti najbliže, je bila videti svetlejša, približno enajste magnitude, a to je še vedno stokrat temneje, kot lahko vidimo brez pripomočkov. Vendar je ta hladna zvezda tudi zelo aktivna. Mislim na magnetno aktivnost, ki lahko povzroči občasne izbruhe. Izbruhov na tej zvezdi lani nismo opazili, poznamo pa izbruhe na drugih podobnih rdečih pritlikavih zvezdah. Take zvezde lahko med izbruhi, ki trajajo od nekaj minut do nekaj ur, postanejo več tisočkrat svetlejše. Torej je mogoče, da je bila Scholzeva zvezda med morebitnim izbruhom dovolj svetla, da so jo naši zemeljski predniki opazili. Vendar ti izbruhi najbrž niso bili prav pogosti, morda enkrat na leto ali kaj takega. Mogoče je torej Scholzeva zvezda našim prednikom občasno zasvetila na nebu, že čez nekaj minut ali ur pa se je spet pogreznila v nevidnost. Zanimivo je, da je bila, ko je bila najbliže, v Velikem vozu. Torej so jo kdaj pa kdaj morda lahko videli tudi takratni Zemljani.

Je mogoče, da se je število kometov, ki k nam prihajajo od zelo daleč, zaradi

Eric Mamajek

mimoleta Scholzeve zvezde povečalo? 

Bi lahko sklepali, da je v davnini podoben dogodek povzročil vesoljsko bombardiranje, ki je vzrok za nastanek številnih kraterjev na naši Luni?

Zvezde, ki letijo mimo, zares lahko zmotijo komete, ki jih najdemo v Oortovem oblaku. Oortov oblak je velikanska kroglasta združba, ki šteje nekaj bilijonov kometov z maso, večjo od kilometra. Vemo, da ta oddaljeni rezervoar kometov obstaja, saj vidimo komete, ki prihajajo k nam z več tisočkrat daljše razdalje, kot je ta med Zemljo in Soncem. To je v petdesetih letih prejšnjega stoletja prvi ugotovil Nizozemski astronom Jan Oort. Torej vemo, da je tam zunaj na milijarde kometov. Vprašali ste me, ali jih je Scholzova zvezda zmotila. Odgovor je verjetno pritrdilen, vendar je šla ta zvezda skozi zunanja območja Oortovega oblaka, v katerih so posejani zelo na redko. Če bi letela bliže Soncu, bi nas nekoliko bolj skrbelo, v našem primeru pa je bil mimolet zaradi dveh okoliščin čisto nedolžen. Prva je izjemno majhna masa zvezde, druga pa njena velika hitrost, ki je dosegla kar 80 kilometrov na sekundo. Ta zvezda je zaradi teh dveh razlogov le malo vplivala na komete v Oortovem oblaku. Če pa bi imeli zvezdo z veliko snovi, ki bi se gibala počasi in letela bliže, bi bil vpliv veliko večji. Ocenjujemo, da se tak mimolet, ki povzroči dež kometov, zgodi enkrat na nekaj sto milijonov ali morda na milijardo let, torej zelo poredko. Vseeno pa je del kraterjev, ki jih vidimo na planetih in lunah v naši okolici, verjetno posledica takega obstreljevanja s kometi. Moramo pa se zavedati dvojega. Prvič, kometi iz Oortovega oblaka stalno prihajajo, saj ta oblak motijo plimske sile naše galaksije, ki se med gibanjem Sonca v njej ves čas spreminjajo, drugič pa moramo upoštevati, da so zvezde od nekdaj potovale skozi Oortov oblak in bodo tudi v prihodnje. Takih zvezd je kakšnih deset na milijon let. Po večini gre za mimolete zvezd z malo snovi, ki potujejo skozi razredčena zunanja območja oblaka, podobno kot pri Scholzevi zvezdi. Torej je tako kot pri zemeljskih nevihtah. Večina jih ne povzroči posebnih neprijetnosti, vsake toliko časa pa se zgodi tudi kaj slabega. Te divje nevihte so zelo redke in tudi mimolet Scholzeve zvezde je bil nekaj precej običajnega.

Profesor Mamajek, razkrili ste doslej najbližji znani mimolet kakšne zvezde. Bi bilo mogoče poiskati vse take mimolete in sestaviti njihov seznam v prejšnjih in seveda prihodnjih tisočletjih?

Ne vem, ali bo ta seznam res popoln. Vendar pa je Evropska vesoljska agencija leta 2013 izstrelila misijo Gaia. Ta bo naredila karto položajev v prostoru in gibanja za milijardo najsvetlejših zvezd v naši galaksiji. To je zares neverjeten cilj, ki si ga je zadala Evropska vesoljska agencija. Prvi rezultati te misije bodo objavljeni v letu ali dveh. Ko bomo čez morda 5 let imeli na voljo končni katalog, bodo astronomi vsaj med milijardo zvezd, ki so videti najsvetlejše, lahko naredili popoln pregled in ugotovili, katere izmed njih so ali bodo letele najbliže našemu Soncu. Seveda že zdaj precej vemo o morebitnih mimoletih zvezd, ki so na nebu videti najsvetlejše, in jih celo vidimo s prostim očesom. Nobena od teh zvezd nam ne zbuja skrbi. Gaia pa nam bo odprla dostop do temnih zvezd, ki imajo pogosto le malo snovi. Take zvezde z majhno maso, ki jim pravimo rdeče pritlikavke, v naši Galaksiji po številu prevladujejo. Scholzeva zvezda je ena številnih takih zvezd. Naše sedanje znanje o njihovem gibanju in položajih je zelo nepopolno, ker je te temne zvezde zelo težko opazovati. Pri tem bo Gaia močno pomagala in prepričan sem, da bo kakšen evropski doktorski študent pregledoval njene podatke in skušal odkriti zvezde, ki so že letele mimo nas ali še bodo.


Frekvenca X

692 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Davno srečanje temne zvezde in sonca

05.03.2015

V znanosti so odkritja le redko plod naključja, na drugi strani pa nikoli ni mogoče vedeti vnaprej, kaj boste odkrili. Tako je lani dr. Ralf Scholz iz Potsdama odkril zelo temno zvezdo v bližini našega Sonca, ki so jo kmalu poimenovali Scholzeva zvezda. Profesor Eric Mamajek (izg.:Memedžek), ki je eden največjih strokovnjakov za preučevanje okolice našega Sonca, pa je odkril, da je ta zvezda pred 70 tisoč leti potovala relativno blizu Sonca in je v tem pogledu naša doslej najbližja poznana obiskovalka. S profesorjem Mamajekom se bomo pogovarjali o njegovem odkritju in o vplivu takih mimoletov na komete v našem Osončju, pa seveda, kdaj si lahko obetamo, da bomo morebitne bodoče zvezdne obiskovalce poznali vnaprej.

V znanosti so odkritja le redko plod naključja, na drugi strani pa nikoli ni mogoče vedeti vnaprej, kaj boste odkrili. Tako je lani dr. Ralf Scholz iz Potsdama odkril zelo temno zvezdo v bližini našega Sonca, ki so jo kmalu poimenovali Scholzeva zvezda. Profesor Eric, ki je eden največjih strokovnjakov za preučevanje okolice našega Sonca, pa  je odkril, da je ta zvezda pred 70 tisoč leti potovala relativno blizu Sonca in je v tem pogledu naša doslej najbližja poznana obiskovalka. S profesorjem Mamajekom smo se pogovarjali o njegovem odkritju in o vplivu takih mimoletov na komete v našem Osončju, pa seveda, kdaj si lahko obetamo, da bomo morebitne bodoče zvezdne obiskovalce poznali vnaprej.

 INTERVJU: Tomaž Zwitter

Z menoj je profesor Tomaž Zwitter, ki nas bo vpeljal v današnjo temo. Zvezd, kot vemo, je izjemno veliko in mislili bi si, da srečanje dveh ni nič omembe vrednega. Je torej to kaj posebnega?

Zvezd je seveda veliko, samo v naši galaksiji jih je več kot sto milijard, vendar je veliko tudi vesolje. Zvezde so v resnici zelo daleč narazen. Če bi velikost našega Sonca pomanjšali na velikost pomaranče, bi bila trenutno najbližja zvezda mandarina na Kanarskih otokih. Med njima je očitno veliko praznega prostora in ni prav verjetno, da bi se naša pomaranča s to mandarino kdaj srečala. Profesor Mamajek pa je odkril, da nekoliko bolj stran obstaja zvezda, ki bi bila v našem pomanjšanem merilu frnikola na NoviZelandiji in se giblje skoraj natankov smeri, ki vodi stran od nas. Iz tega je izračunal, da je nekdaj letela približno na razdalji od Ženeve od Ljubljane. To je seveda kar daleč, če pomislimo, da bi bila v tem merilu razdalja milimeter velike Zemlje od za pomarančo velikega Sonca le 15 metrov. Vseeno pa je morda zmotila kakšen komet, ki ždi tam zunaj, in ga pognala proti Soncu. Predvsem pa je odkritje profesorja Mamajeka zanimivo zato, ker zdaj vemo, da se taka srečanja res dogajajo.

Astronomi radi omenjajo zelo velike številke.Čas radi merite v tisočletjih ali milijonih let.

prof. dr. Tomaž Zwitter

foto: Val 202

Se da ta mimolet Scholzeve zvezde ponazoriti s kakšno bolj zemeljsko primerjavo?

Seveda. Profesor Mamajek je opazoval zvezde v okolici Sonca. Zvezde lahko pri tem zamenjamo z lučjo motorista, sebe pa s pešcem, ki ponoči prečka cesto. Če opazite luč motorja, ki se pomika vstran, vas to ne skrbi, saj bo šel mimo. Če pa opazite žaromet, ki se ne premika, sklepate, da gre motorist točno proti vam in morate biti previdni. Profesor Mamajek je opazil zvezdo, pri kateri– če uporabimo prispodobo z motoristom – vidimo rdečo luč in njegovo oddaljevanje lahko potrdimo tudi z radarjem, torej je že šel mimo nas. Ker pa je motorist še vedno v bližini in se ne premika prečno, lahko sklepamo, da je naša zvezda šla precej blizu.

Je bilo to odkritje slučajno ali plod načrtnega dela?

V znanosti so odkritja redko le plod naključja, na drugi strani pa skoraj nikoli ne veste vnaprej, kaj boste odkrili. Profesor Mamajek je eden največjih svetovnih strokovnjakov za preučevanje okolice našega Sonca. Nedavno je na primer odkril več doslej neznanih skupin mladih zvezd v naši bližini. Na zvezdo, za katero je zdaj jasno, da je nekoč letela mimo nas, je lani postal pozoren dr. Scholz, saj je ugotovil, da je razmeroma blizu in se prečno skoraj ne premika. Torej je nekoliko podobna našemu motoristu. Profesor Mamajek je potem uporabil teleskopa v Čilu in Južni Afriki in ugotovil, da Dopplerjev premik njene svetlobe, podobno kot pri radarju, kaže, da se zvezda oddaljuje. Odkritje je torej plod načrtnega dela, vendar profesor Mamajek ni vnaprej vedel, ali se zvezda približuje, oddaljuje ali pa morda le miruje, tako kot motorist, ki bi stal s prižgano lučjo.

Hvala, prof. Zwitter za slikovite primerjave. 

foto: Michael Osadciw / University of Rochester

INTERVJU: Eric Mamajek

Erica Mamajeka, izrednega profesorja za fiziko in astronomijo smo poklicali na univerzo Rochester v New Yorku. Profesor Mamajek, pred dvema tednoma ste objavili odkritje, da je pred 70 tisoč leti ena od zvezd iz okolice Sonca letela mimo zelo blizu nas. Kako blizu je letela in kako to veste?

Zvezda se nam je približala na 8 desetin svetlobnega leta, to je približno 52-tisočkrat toliko, kot je razdalja med Zemljo in Soncem. Kako to vemo? Zvezdo je lani odkril nemški astronom Ralf Dieter Scholz iz Potsdama. Izmerili smo njeno hitrost. Če primerjate hitrost oddaljevanja te zvezde in njeno gibanje po nebu v prečni smeri ter dodate še njen položaj in razdaljo, lahko izračunate njeno hitrost v vseh treh smereh. Potem račun, ki upošteva tudi gibanje Sonca in privlak preostalih teles v naši Galaksiji, pokaže naravo tirnice te zvezde, ki jo je v preteklosti peljala zelo blizu Sonca. Seveda je pri tem treba upoštevati tudi negotovost meritev. Tako mislimo, da je letela mimo nas pred 70 tisoč leti, lahko pa tudi 10 ali 15 tisoč let prej ali pozneje.

Ima ta Scholzeva zvezda kakšne nenavadne lastnosti?

Ta zvezda ima zelo majhno maso. Je prav na spodnji meji količine snovi, ki jo mora imeti zvezda, da lahko še sprošča energijo s spajanjem vodika v svoji sredici. Njena spremljevalka, rjava pritlikavka, ima še manj snovi in je nekakšna ponesrečena zvezda. Scholzeva zvezda je torej dvojna: količina snovi v eni od zvezd komaj zadostuje za to, da se vodik lahko spaja v helij, pri drugi, ki jo imenujemo rjava pritlikavka, pa ta reakcija ne more potekati. Masi teh zvezd sta osem in šest odstotkov mase našega Sonca.

Pred 70 tisoč leti so se moderni ljudje selili iz Afrike, Evrazijo pa so naseljevali naši sorodniki iz vrste homo erectus, pokončni človek. Je mogoče, da je kdo od naših prednikov videl mimolet te zvezde, ali je bila izgubljena med številnimi temnimi pikami na nebu, ki jih brez sodobnih optičnih naprav ni mogoče opazovati?

Scholzeva zvezda je zelo temna. Mi astronomi to izražamo v magnitudah, ki jih zdaj ne bi razlagal, lahko pa omenim, da ima ta zvezda trenutno 18-to magnitudo. Torej je več kot 10-tisočkrat temnejša od tistih, ki jih še lahko vidimo s prostim očesom. Ko nam je bila pred 70 tisoč leti najbliže, je bila videti svetlejša, približno enajste magnitude, a to je še vedno stokrat temneje, kot lahko vidimo brez pripomočkov. Vendar je ta hladna zvezda tudi zelo aktivna. Mislim na magnetno aktivnost, ki lahko povzroči občasne izbruhe. Izbruhov na tej zvezdi lani nismo opazili, poznamo pa izbruhe na drugih podobnih rdečih pritlikavih zvezdah. Take zvezde lahko med izbruhi, ki trajajo od nekaj minut do nekaj ur, postanejo več tisočkrat svetlejše. Torej je mogoče, da je bila Scholzeva zvezda med morebitnim izbruhom dovolj svetla, da so jo naši zemeljski predniki opazili. Vendar ti izbruhi najbrž niso bili prav pogosti, morda enkrat na leto ali kaj takega. Mogoče je torej Scholzeva zvezda našim prednikom občasno zasvetila na nebu, že čez nekaj minut ali ur pa se je spet pogreznila v nevidnost. Zanimivo je, da je bila, ko je bila najbliže, v Velikem vozu. Torej so jo kdaj pa kdaj morda lahko videli tudi takratni Zemljani.

Je mogoče, da se je število kometov, ki k nam prihajajo od zelo daleč, zaradi

Eric Mamajek

mimoleta Scholzeve zvezde povečalo? 

Bi lahko sklepali, da je v davnini podoben dogodek povzročil vesoljsko bombardiranje, ki je vzrok za nastanek številnih kraterjev na naši Luni?

Zvezde, ki letijo mimo, zares lahko zmotijo komete, ki jih najdemo v Oortovem oblaku. Oortov oblak je velikanska kroglasta združba, ki šteje nekaj bilijonov kometov z maso, večjo od kilometra. Vemo, da ta oddaljeni rezervoar kometov obstaja, saj vidimo komete, ki prihajajo k nam z več tisočkrat daljše razdalje, kot je ta med Zemljo in Soncem. To je v petdesetih letih prejšnjega stoletja prvi ugotovil Nizozemski astronom Jan Oort. Torej vemo, da je tam zunaj na milijarde kometov. Vprašali ste me, ali jih je Scholzova zvezda zmotila. Odgovor je verjetno pritrdilen, vendar je šla ta zvezda skozi zunanja območja Oortovega oblaka, v katerih so posejani zelo na redko. Če bi letela bliže Soncu, bi nas nekoliko bolj skrbelo, v našem primeru pa je bil mimolet zaradi dveh okoliščin čisto nedolžen. Prva je izjemno majhna masa zvezde, druga pa njena velika hitrost, ki je dosegla kar 80 kilometrov na sekundo. Ta zvezda je zaradi teh dveh razlogov le malo vplivala na komete v Oortovem oblaku. Če pa bi imeli zvezdo z veliko snovi, ki bi se gibala počasi in letela bliže, bi bil vpliv veliko večji. Ocenjujemo, da se tak mimolet, ki povzroči dež kometov, zgodi enkrat na nekaj sto milijonov ali morda na milijardo let, torej zelo poredko. Vseeno pa je del kraterjev, ki jih vidimo na planetih in lunah v naši okolici, verjetno posledica takega obstreljevanja s kometi. Moramo pa se zavedati dvojega. Prvič, kometi iz Oortovega oblaka stalno prihajajo, saj ta oblak motijo plimske sile naše galaksije, ki se med gibanjem Sonca v njej ves čas spreminjajo, drugič pa moramo upoštevati, da so zvezde od nekdaj potovale skozi Oortov oblak in bodo tudi v prihodnje. Takih zvezd je kakšnih deset na milijon let. Po večini gre za mimolete zvezd z malo snovi, ki potujejo skozi razredčena zunanja območja oblaka, podobno kot pri Scholzevi zvezdi. Torej je tako kot pri zemeljskih nevihtah. Večina jih ne povzroči posebnih neprijetnosti, vsake toliko časa pa se zgodi tudi kaj slabega. Te divje nevihte so zelo redke in tudi mimolet Scholzeve zvezde je bil nekaj precej običajnega.

Profesor Mamajek, razkrili ste doslej najbližji znani mimolet kakšne zvezde. Bi bilo mogoče poiskati vse take mimolete in sestaviti njihov seznam v prejšnjih in seveda prihodnjih tisočletjih?

Ne vem, ali bo ta seznam res popoln. Vendar pa je Evropska vesoljska agencija leta 2013 izstrelila misijo Gaia. Ta bo naredila karto položajev v prostoru in gibanja za milijardo najsvetlejših zvezd v naši galaksiji. To je zares neverjeten cilj, ki si ga je zadala Evropska vesoljska agencija. Prvi rezultati te misije bodo objavljeni v letu ali dveh. Ko bomo čez morda 5 let imeli na voljo končni katalog, bodo astronomi vsaj med milijardo zvezd, ki so videti najsvetlejše, lahko naredili popoln pregled in ugotovili, katere izmed njih so ali bodo letele najbliže našemu Soncu. Seveda že zdaj precej vemo o morebitnih mimoletih zvezd, ki so na nebu videti najsvetlejše, in jih celo vidimo s prostim očesom. Nobena od teh zvezd nam ne zbuja skrbi. Gaia pa nam bo odprla dostop do temnih zvezd, ki imajo pogosto le malo snovi. Take zvezde z majhno maso, ki jim pravimo rdeče pritlikavke, v naši Galaksiji po številu prevladujejo. Scholzeva zvezda je ena številnih takih zvezd. Naše sedanje znanje o njihovem gibanju in položajih je zelo nepopolno, ker je te temne zvezde zelo težko opazovati. Pri tem bo Gaia močno pomagala in prepričan sem, da bo kakšen evropski doktorski študent pregledoval njene podatke in skušal odkriti zvezde, ki so že letele mimo nas ali še bodo.


06.06.2018

Pravična neenakost

Ko nekdo zadene na lotu, se nam to ne zdi nepravično, saj gre za naključno izbiro, ne za posledico vrednotenja ali nagrajevanja. Nasprotno pa večinoma ne sprejemamo, da bi dolgoročno vsi zaslužili enako, ne glede na vloženi trud in zasluge. Nekateri raziskovalci zagovarjajo hipotezo, da ekonomska neenakost ljudi večinoma ne moti, če zraven ne občutijo tudi nepravičnosti. Pravična neenakost naj bi prepričala več ljudi kot nepravična enakost! Je torej Robin Hood živel v zmoti? Sogovorniki: dr. Mark Sheskin, dr. Sašo Dolenc, dr. Urban Boljka in Katja Perat.


31.05.2018

Dilema: pametni telefon ali mezinec desnice

Čemu bi se raje odpovedali: pametnemu telefonu ali mezincu na desni roki? To vprašanje študentom pogosto zastavi antropolog dr. Dan Podjed. Včasih mu kdo odgovori, da če gre za mezinec, ni problema, ker telefon tako ali tako upravlja s kazalcem. Dr. Podjed se ukvarja z aplikativno antropologijo, znanstveno preučuje naša vsakdanja življenja, naš odnos do sodobnih tehnologij, avtomobilov, (ne)zdravega življenja, okolja … Je docent na Filozofski fakulteti v Ljubljani in znanstveni sodelavec Inštituta za slovensko narodopisje ZRC SAZU. Prepleta antropologijo in inženirstvo.


24.05.2018

S padalom med oblake

Frekvenca X se je tokrat skušala čim bolj približati pravemu letenju. Odločili smo se za napravo, ki izkorišča tako gravitacijo kot silo trenja, da nas ponese prek velikih razdalj in z velikih višin. O padalih je razmišljal že Leonardo da Vinci, od takrat smo jih razvili celo paleto oblik in velikosti, uporabljamo jih celo v vesolju. Najprej z višine 4000 metrov poletimo proti dolini Soče, nato z nadzvočnimi padali pristanemo na Marsu, na koncu se odpravimo še na rekordni 300 kilometrski izlet po nebu.


17.05.2018

Bombe

V Frekvenci X raziskujemo bombe: od njihove rabe v gospodarstvu do ostalin iz obeh svetovnih in vojne za slovensko osamosvojitev, ki jih pri nas ni malo. Državna enota za varnost pred neeksplodiranimi ubojnimi sredstvi, ki uničuje potencialno nevarne najdbe sprehajalcev po slovenskih gozdovih, ima glede na letno povprečje več kot eno intervencijo na dan. Pogovarjali smo se s predstavnikom podjetja, ki se ukvarja z miniranjem v kamnolomih, rudnikih, na gradbiščih in z rušenjem visokih zgradb, s strokovnjaki z omenjene enote za odstranjevanje povojnih ostankov in z upokojenim specialcem slovenske policije, ki ga pokličejo na pomoč, ko se znajdejo v negotovosti; na primer pri lanskem primeru letalske bombe v Vurberku. Britanska raziskovalka psihosocialnih in kulturnih vplivov rabe jedrskega orožja z Univerze v Southamptonu je razložila, kako se je v zadnjih letih v nekaterih državah spremenil odnos javnosti do atomskih bomb in zakaj je pomembno, da te v javnem diskurzu ostanejo tabu.


10.05.2018

Nevroznanost na sprehodu po galeriji

Nevroznanost se tokrat podaja med umetnost, obiskala bo namreč galerijo. Pred časom se je iz nevroznanstvenega preučevanja umetnosti rodila nova veda, ki ji danes rečemo nevroestetika. Temelje zanjo so pred skoraj dvajsetimi leti postavili nevroznanstveniki Semir Zeki na eni strani, Vilayanur Ramachandran in William Hirstein na drugi - izdali so namreč kontroverzna članka, v katerih nekoliko domišljavo trdijo, da lahko nekaj tako kompleksnega, kot je umetnost, razložijo ob pomoči nevroznanosti. Lahko torej razmišljamo v smeri, da imamo v možganih center za umetnost, kot trdi Semir Zeki, ali je zaznavanje in občutenje umetnin odvisno od povezovanja različnih centrov v našem zaznavnem sistemu? Je za razlago umetnosti dovolj, če poznamo osem zakonitosti globoke strukture možganov, ki si jih je med sprehodom brez poznavanja umetnostne zgodovine zamislil Ramachardan? Kakšni procesi se dogajajo v možganih, ko opazujemo določene umetnine, denimo portret Mice Čop, rojene Kessler, slikarke Ivane Kobilca, ali pa pokrajino, recimo van Goghovo Zvezdno noč? Je naše dojemanje umetnosti povezano z našim humanističnim, izkustvenim predznanjem in koliko danes še velja Braqueova izjava, da umetnost vznemirja, znanost pomirja. Foto: Narodna galerija


03.05.2018

Epoha iz futuristične japonske naprave

Tsukuba je japonsko raziskovalno-znanstveno središče, 50 kilometrov oddaljeno od Tokia. Konec aprila so v tamkajšnjem trkalniku SuperKEKB, 11 metrov pod zemljo, zaznali prve trke pospešenih delcev, elektronov in pozitronov. Med delovanjem s polno močjo bodo žarki elektronov in pozitronov trkali in pri tem proizvajali veliko število novih delcev. Delce bodo zaznavali z detektorjem Belle II, ki je po gostoti trkajočih žarkov najzmogljivejši detektor na svetu. Z natančnimi meritvami bodo znanstveniki odkrivali znake “nove fizike”, torej eksperimentalna dejstva, ki se ne ujemajo s trenutno teorijo, Standardnim modelom. Gre za prvi nov trkalnik, ki je začel delovati po tistem v Cernu pred desetimi leti. SuperKEKB je futuristična naprava, ki jo je zasnovala in izdelala ekipa japonskih fizikov, pri projektu pa imajo zelo pomembno vlogo tudi slovenski znanstveniki. Kako konkretno sodelujejo naši strokovnjaki, v čem se SuperKEKB razlikuje od trkalnika LHC v Cernu in fuzijskega reaktorja ITER v Franciji? Kaj prinaša “epohalni trenutek na Japonskem” za naše razumevanja sveta in vesolja, se pogovarjamo s prof. dr. Petrom Križanom, ki skrbi za koordinacijo priprave celotnega detektorja.


26.04.2018

Misija Gaia: kot bi merili evrski kovanec na Luni

Misija Gaia Evropske vesoljskega agencije meri velikost naše Galaksije in vsega vesolja. V dobrih štirih letih delovanja je natančno izmerila razdalje do milijarde njenih zvezd. Osupljiva je njena natančnost, saj je v prenesenem pomenu zmožna izmeriti celo velikost evrskega kovanca na Luni. Gre za izjemen tehnološki izziv in veliko spoznavno moč o razsežnostih vesolja. Če bi naše Sonce pomanjšali na velikost pomaranče, bi bila v tem merilu najbližja zvezda za Soncem mandarina na Kanarskih otokih, Zemlja pa milimetrsko zrno petnajst metrov od Sonca Misija Gaia zdaj velja za največji katalog astronomskih meritev, ki bo pokazal, kako je nastala naša Galaksija. Bližje uresničitvi časovnega stroja še nismo bili. Sogovornika: -Dr. Anthony Brown, vodja podatkovnega konzorcija misije Gaia -Prof. Tomaž Zwitter, astrofizik in vodja slovenskih sodelavcev misije Gaia


18.04.2018

Slovenska vizionarka biološkega računalništva

Naše celice imajo veliko zanimivih lastnosti, delujejo lahko kot biološke naprave in imajo spomin. Povezujejo se tudi v logična vezja in lahko delujejo celo kot računalniki. Raziskovalno polje dr. Tine Lebar je sintezna biologija, ki celice spreminja tako, da dobijo neke povsem nove lastnosti, ki v naravi ne obstajajo. Raziskave potekajo tudi na celicah sesalcev, ki jih spreminjajo tako, da so zmožne izvajati logične funkcije. S posegi v celične sisteme je mogoče ustvarili nova kompleksna genska omrežja, ki bi bila uporabna za različne aplikacije, tudi v medicini: “Celice spreminjamo tako, da bodo za nas delale nekaj koristnega. Takšne celice bi lahko bile uporabne na primer za biosenzorje v diagnostiki, vlgradili bi jih lahko tudi v tkivo pacienta, kjer bi lokalno proizvajale neko biološko zdravilo.” Dr. Tina Lebar s Kemijskega inštituta je v zadnjem letu prejela tri velika priznanja: štipendijo za Ženske v znanosti, Preglovo nagrado za doktorat in pred kratkim še zlati znak Instituta Jožefa Stefana. Kljub vrhunskim dosežkom pa podobno kot njeni številni vrstniki pri tridesetih letih ni redno zaposlena. V prihodnjih mesecih načrtuje nove izzive v Združenih državah Amerike. Predanost znanosti izkazuje na prav unikaten način: temo svojega doktorata z naslovom Načrtovanje genskih regulatornih omrežij na osnovi DNA vezavnih proteinov ima upodobljeno tudi v veliki tetovaži na desni roki. Tina se v prostem času ukvarja s staro istrsko igro pandolo.


12.04.2018

Hvaležni, sočutni in ponosni imamo boljše možnosti za uspeh

Bi raje dobili 17 dolarjev takoj ali 100 dolarjev čez eno leto? Frekvenca X se tokrat sprašuje o uspehu, ali še bolje rečeno – o poti do uspeha. Ameriški psiholog profesor David DeSteno je s psihološkimi eksperimenti ugotovil, da določena čustvena stanja olajšajo našo sposobnost samonadzora in nam pomagajo bolj ceniti prihodnost. V knjigi Emotional Success: The Power of Gratitude, Compassion and Pride pod vprašaj postavlja uveljavljeno tezo, da je edina pot do uspeha garaško delo in odrekanje z močjo volje. O hvaležnosti, sočutju in ponosu bomo govorili z dr. Davidom DeStenom, fizikom in filozofom dr. Sašem Dolencem in nekdanjo vrhunsko plavalko, zdaj pa raziskovalko dr. Natašo Kejžar.


05.04.2018

Izzivi sodobnih jedrskih tehnologij

Prof. Kord Smith upravljanje z jedrsko energijo primerja s pristajanjem njegovega pol stoletja starega letala na neravni travnatni stezi med ameriškimi gorami: z vrhunskim znanjem in veščinami se je mogoče varno soočati z najtežjimi izzivi. Tudi v zelo posebnih okoliščinah. Prof. Smith je eden najvplivnejših reaktorskih fizikov na svetu in tesno sodeluje s slovenskimi strokovnjaki. V reaktor TRIGA je skupaj s kolegom prof. Benom Forgetom pripeljal osem študentov z ugledne univerze MIT, v predmestju Ljubljane so izvedli tečaj eksperimentalne reaktorske fizike. Ameriški gostje uporabljajo najnaprednejša simulacijska orodja za napovedovanje pojavov v jedrskih reaktorjih, pri razvoju sodelujejo z industrijo in imajo dostop do najmočnejših računalnikov v ZDA. Kakšne so aktualne usmeritve v razvoju jedrske energije, kako je z razvojem drugih jedrskih tehnologij na čelu z medicino, kateri so največji izzivi prihodnosti? Sogovorniki: prof. Kord Smith, reaktorski fizik z izkušnjami iz industrije; prof. Benoit Forget, reaktorski fizik z MIT; doc. dr. Luka Snoj, vodja Odseka za reaktorsko fiziko na IJS.


29.03.2018

Duncan Haldane, Nobelovec s slovenskimi koreninami

Nobelov nagrajenec, pa še napol Slovenec. Dr. Duncan Haldane je Nobelovo nagrado dobil leta 2016 na področju fizike za odkritje na področju topolške kvantne snovi. Je raziskovalec, ki v laboratoriju preživi tudi 15 ur na dan, a pravi, da ima to srečo, da je plačan za nekaj, kar resnično rad počne. “Žena me sicer pogosto sprašuje, zakaj si ne vzamem več počitnic, ampak kolege fizike velikokrat spoznavam na zelo lepih krajih in to so moje počitnice. Navdušen sem nad tem, kar počnem.” Njegova mama je bila Slovenka Ljudmila Renko, pogumna zdravnica, ki je svojo družino rešila iz koncentracijskega taborišča: “Dedek je imel v domači kleti skrite zaloge zlatih kovancev. Mama jih je izkopala, si jih všila v obleko, potovala do Hesselberga v Nemčiji in s kovanci podkupila nekaj nemških oficirjev, da so družino izpustili.” Spregovoril je o svoji materi, kaj mu je ta v življenju pomenila in dala, kako Trumpova Amerika podpira znanost in zakaj je pred tridesetimi leti zapustil Veliko Britanijo. Pa seveda tudi o begu možganov, raziskovanju, pomenu poučevanja, mentorstva in interakcije, o tem, da se ne smemo jemati preresno, pa tudi o tem, da je kvantna mehanika zakon.


22.03.2018

Cepljenje med obveznostjo in svobodno voljo

Podrobno smo se spoznali z gripo, simulirali smo potek nalezljivih bolezni, v 3. delu podkasta o epidemijah in pandemijam zdaj raziskujemo, ali imata medicina in znanost še kaj rezerv na področju preprečevanja nalezljivih bolezni. Kako se ustvarjajo nova in bolj učinkovita cepiva ob dejstvu, da njihov razvoj ni več prioriteta farmacevtske industrije, ki veliko več kot s cepivi zasluži z drugimi zdravili. Zanima nas vloga države in zakonodaje pri omejevanju širjenja nalezljivih bolezni. Kako se konstruktivno soočati s pomisleki glede cepljenja in ali bi bilo prostovoljno odločanje o cepljenju dobra rešitev. Lahko napovedana zaostritev zakonodaje tudi v Sloveniji prinese pozitivne ali stranske učinke? Koliko so pri precepljenosti pomembni posamezniki in družba, kakšno vlogo imata pri skrbi za splošno zdravje svobodna volja in individualizem? Sogovorniki: prof. dr. John Oxford, virolog in vodilni strokovnjak za gripo; Eva Vrščaj, vodja projekta Imuno; prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine; dr. Ben Goldacre, avtor knjige Slaba znanost; dr. Veronika Učakar in dr. Maja Sočan, NIJZ. Avtorja/producenta: Luka Hvalc in Maja Stepančič Strokovni sodelavec: dr. Sašo Dolenc Pripovedovalca: Igor Velše in Bernard Stramič Oblikovna podoba: Katja Černela


15.03.2018

Kako se širijo nalezljive bolezni

Podrobno smo se spoznali z gripo in ugotovili, da kljub velikemu napredku znanosti ne moremo preprečiti, da ne bi narava ostala največji bioterorist na svetu. Vseeno pa je mogoče številne nalezljive bolezni zelo omejiti, nekatere tudi izkoreniniti. Predvsem zaradi cepiv, a se precepljenost iz leta v leto zmanjšuje, zato smo priča novih izbruhom. Lani se je v Evropi z ošpicami okužilo 14.500 ljudi, trikrat več kot leto prej. Kaj kažejo simulacije epidemij, kje je kritična meja za nevarnost okuženosti širše družbe, kaj nam pove termin čredne imunosti? Analiziramo primer izbruha ošpic v Disneylandu, hipotetično projiciramo, kako bi se lahko nalezljiva bolezen širila v srednje velikem slovenskem mestu in kaj bi se zgodilo, če bi se ošpice pojavile v vrtcu, ki ga zaradi odločitve staršev obiskuje sto necepljenih otrok. Sogovorniki: Dr. David Pigott, strokovnjak za simulacije poteka nalezljivih bolezni; prof. dr. John Oxford, virolog in vodilni strokovnjak za gripo; prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine; Eva Vrščaj, vodja projekta Imuno. Avtorja/producenta: Luka Hvalc in Maja Stepančič Strokovni sodelavec: dr. Sašo Dolenc Pripovedovalca: Igor Velše in Aleksander Golja Oblikovna podoba: Katja Černela


14.03.2018

Hawkingova radiacija je delovala tudi metaforično

"Moj cilj je preprost: popolno razumevanje vesolja, zakaj je takšno, kakršno je, in zakaj sploh obstaja," je nekoč zapisal znameniti fizik Stephen Hawking, ki je umrl v starosti 76 let. Znan je bil predvsem po svojem delu na področju kvantne gravitacije, posebno glede črnih lukenj, in relativnosti, napisal pa je tudi več poljudnoznanstvenih knjig, najbolj znana je Kratka zgodovina časa. Hawking je bil odličen komunikator znanosti in skoraj pop zvezdnik, med drugim je sodeloval s skupino Pink Floyd. “Kljub bolezni je s svojim pojavljanjem v javnosti in pisanjem knjig, ko je lahko premikal še samo en prst, dokazal, da Hawkingova radiacija deluje tudi metaforično,” ob smrti morda zadnjega univerzalnega misleca sodobnega časa, razmišlja fizik in filozof, dr. Sašo Dolenc, urednik Kvarkadabre in strokovni sodelavec oddaje Frekvenca X. In dodaja: "Stephen Hawking je bil iskren in pristen. Verjeli smo mu, čeprav se je tudi kdaj zmotil. Svoj status je izkoristil za širše teme, zavzel se je na primer za javno zdravstvo."


08.03.2018

Pandemije: Smrtonosna španka

“Tako je oče nepremičen obstal ob pogledu na marmornato belo obličje ljubljene štiriletne hčerke, ki ji španjolka ni prizanesla.” Pisatelj Boris Pahor pretresljivo opiše smrt mlajše sestre Mimice. Umrla je leta 1918 med prvim valom španske gripe, ki je sejala smrt tudi na našem območju. Gripa je v marsičem metafora 20. stoletja, orožje za množično uničenje, za njenimi posledicami je umrlo več ljudi kot za posledicami svetovnih vojn, nacizma, atomske vojne. V sto letih so različne oblike gripe pokosile sto milijonov ljudi. Kaj se lahko naučimo iz zgodovine, kako načrtovati in preprečevati pandemije, zakaj je virus influence tako nepredvidljiv in težko obvladljiv, kako je s cepivi in zakaj kljub velikemu napredku znanosti ne moremo preprečiti, da ne bi narava ostala največji bioterorist na svetu. V prvem delu posebnega podkasta Frekvence X raziskujemo smrtonosno špansko gripo. Z znanjem o njenem nastanku in širjenju se sto let po izbruhu lahko veliko naučimo o pandemijah sedanjosti in prihodnosti. Kako je lahko tako majhnemu virusu uspelo nekaj tako velikega, tako grozljivega? Sogovorniki: prof. dr. John Oxford, vodilni svetovni strokovnjak za gripo; prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine; doc. dr. Maja Sočan, predstojnica centra za nalezljive bolezni NIJZ. Avtorja/producenta: Luka Hvalc in Maja Stepančič Strokovni sodelavec: dr. Sašo Dolenc Pripovedovalec: Igor Velše Oblikovna podoba: Katja Černela


22.02.2018

Človek stroj: od Platona do Terminatorja

Podkast Frekvence X smo snemali v kavarni Mafija na Fakulteti za matematiko in fiziko v Ljubljani. Tema: družbene predstave o človeškem telesu. Pred našimi očmi je bilo človeško telo – analizirali smo predstave telesa v različnih filozofskih tradicijah: vlogo medicine in drugih znanosti pri oblikovanju teh predstav, vpliv religij in drugih mističnih narativov na oblikovanje diskurza o telesu skozi zgodovino, pa tudi vse močnejši vpliv modernih tehnologij nanj, npr. mobilnih aplikacij, ki omogočajo najpreprostejši nadzor in “optimizacijo” naših strojev doslej. Gostje: Dr. Mirt Komel, filozof, Fakulteta za družbene vede Miha Blažič – N’toko, glasbenik, kolumnist in aktivist Dr. Matevž Dular, raziskovalec, Fakulteta za strojništvo


22.02.2018

Pozornost je temelj gradnje družbe in civilizacije

Pozor! Človeška pozornost je eden izmed najbolj omejenih virov v 21. stoletju, vsak jo ima na voljo le določeno količino. Pomaga nam ločevati nepomembne informacije in dražljaje od pomembnih, je ena izmed temeljnih človeških značilnosti, ki nam omogoča izgradnjo družbe in civilizacije. Moderne tehnologije in nenehno odprt tok informacij jo postavljata v novo vlogo – okrog nje se gradi ekonomija pozornosti, v kateri podjetja tekmujejo za košček našega časa in misli. V Frekvenci X o vrstah naše pozornosti, mitih, ki so povezani s trajanjem pozornosti in moderno tehnologijo, posebnih sposobnostih oseb z motnjami avtističnega spektra ter o zavednih in nezavednih procesih, ki jim mnogokrat ne posvečamo dovolj pozornosti.


07.02.2018

Tesla v vesolju: dosežek ali promocija?

Po svetu odmeva izstrelitev največje rakete Falcon Heavy, ki jo je izstrelilo podjetje Space X lastnika tovarne električnih avtomobilov Tesla Elona Muska. Kaj pomeni izstrelitev iz znanstvenega in tehnološkega vidika komentira prof. dr. Tomaž Zwitter. Tudi o tem, da se podjetje Elona Muska zanima za slovensko tehnologijo.


01.02.2018

Jabolko na mizi in slovenski kvazikristal

Zaradi fizikalnih vplivov lahko dobijo preproste plasti celic ali tkiva zelo nenavadne oblike. Če pustimo jabolko nekaj dni na mizi, opazimo, da postaja vse manjše, saj pride do neskladja med prostornino mesa in površino lupine. Ta se naguba. Naš gost prof. dr. Primož Ziherl celične strukture pojasnjuje s poenostavljenimi fizikalnimi modeli in povedno ugotavlja, da je resnica odvisna od tega, s kako natančnim povečevalnim steklom jo želimo videti. Prof. Ziherl je skupaj z japonskim kolegom predlagal tudi fizikalni obstoj novega dvorazsežnega kvazikristala, kar je eden najodmevnejših raziskovalnih dosežkov Univerze v Ljubljani v letu 2017.


25.01.2018

Skrivnost hobotnic in naših možganov

Hobotnica ima osupljive sposobnosti spreminjanja svoje oblike in barvnih vzorcev. Človeštvo fascinira že tisoče let. V sodobnosti simbolizira temno energijo, ki s svojimi lovkami obvladuje politiko in gospodarstvo. V zadnjih letih nevroznanstveniki, evolucijski biologi, tehnologi in znanstveniki s področja robotike poglobljeno raziskujejo to skrivnostno, mistično bitje. Projekt Octopus Brainstorming, ki so ga predstavili v Trbovljah, je plod sodelovanja dveh principov, umetnosti in znanosti. Avtorji ga razvijajo že pet let. Niz EEG senzorjev, vgrajenih v telo hobotnice, osvetljeno z barvnimi lučmi, človeka popelje v hobotničin magični in duhovni svet. Obredno pokrivalo v obliki hobotnice na ta način simbolizira utelešeno inteligentnost. Nevroznanstvenik dr. Marc Cohen in umetnica Victoria Vesna raziskujeta komunikacijo med ljudmi na osnovi analize njihovih možganskih valov. Kaj se lahko naučimo iz ugotovitev in katere bolezni bi lahko zdravili?


Stran 15 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov