Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Vznemirljivost astronomije in junijskega neba

01.06.2017

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

Te dni se lepo vidijo Jupitrove lune in Saturn, opaziti bo mogoče tudi mednarodno vesoljsko postajo in iridijev blisk

Evropski južni observatorij v Čilu gradi velik teleskop. Ko bo ta čez sedem let začel delovati, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa, in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

“Ob junijskih večerih priporočam ogled Jupitrovih lun, okoli polnoči je mogoče opaziti Saturn. V četrtek ob 23.03 bo šla prek neba mednarodna vesoljska postaja. Videti jo bo mogoče 5 minut. Za ljubiteljske astronome priporočam obisk spletne strani www.heavens-above.com

Prof. Tomaž Zwitter

Kako se preleviti v Galilea Galileija

Paolo Padovani je italijanski astronom, ki dela na Evropskem južnem observatoriju v Garchingu v Nemčiji. Zanimajo ga aktivna galaktična jedra, to so galaksije, ki imajo v svojem središču aktivno črno luknjo. Take objekte opazujemo z različnimi vrstami svetlobe: od radijske do infrardeče, ultravijolične ter rentgenskih in gamažarkov. Prof. Padovani sodeluje tudi pri izdelavi evropskega Ekstremno velikega teleskopa, ki ga Evropski južni observatorij gradi v Čilu in bo z zrcalom s premerom 39 metrov največji teleskop na svetu za opazovanja v vidni in infrardeči svetlobi. Prof. Padovani je skupaj s kolegi odkril 30 velikih črnih lukenj zunaj mlečne ceste in velja za enega najbolj cenjenih evropskih astronomov.

Prof. Padovani zadnjih deset let na Evropskem južnem observatoriju vodi Virtualni observatorij, zato smo ga v pogovoru posebej za Frekvenco X zaprosili, naj nam razloži specifiko virtualnega observatorija.  

Namesto da bi za neko opazovanje uporabili običajni teleskop, pri virtualnem observatoriju zložite skupaj podatke prejšnjih opazovanj, v idealnem primeru so to opazovanja vseh teleskopov na Zemlji. S temi podatki nato skušate odgovoriti na svoje znanstveno vprašanje. Seveda pa morate najprej te podatke poiskati, jih razumeti in jih prikazati na različne načine. Torej je bilo in je še vedno precej dela, da so vsa ta opazovanja prosto in v uporabni obliki na voljo vsem astronomom po svetu. Nekatera orodja so seveda zelo preprosta. Vsak si recimo lahko izriše neko galaksijo ali izbrani del neba. Zdaj smo po vsem svetu vzpostavili spletne strani in načine za iskanje podatkov o vseh mogočih vrstah objektov in v različnih vrstah svetlobe. Izraz virtualni tu torej ne pomeni, da tak observatorij ne bi bil uporaben za resno znanstveno delo, ampak le, da imate možnost uporabljati podatke prejšnjih opazovanj po svetu, ki smo jih združili v enotno urejeni in prosto dostopni arhiv podatkov.

Virtualni observatorij torej vsakomur omogoča brskanje po nebu. Prof. Padovani, imate morda idejo, kaj bi lahko poslušalci Frekvence X opazili iz udobja dnevne sobe? Bi lahko morda preverili, ali so v središčih številnih galaksij velike črne luknje?

Načelno je odgovor da, v praksi pa morate vedeti, kam gledati in kateri podatki so pravi za vaš namen. Lahko bi se recimo osredotočili na kakšno bližnjo galaksijo in skušali odkriti, ali se sij svetlobe, ki prihaja iz središča galaksije, sčasoma spreminja. Hitro prižiganje in ugašanje vam namreč pove, da je svetilo majhno, manjše od velikosti, ki jo svetloba prepotuje v tako kratkem času. In če svetilo seva tudi veliko energije, je edina razlaga, da opazujete majhno in svetlo območje v okolici črne luknje. Če povzameva, to se načelno da narediti, vendar potrebujete kar nekaj dodatnih informacij, ki jih seveda tudi lahko najdete na spletu: za začetek je to že seznam obetavnih tarč.

Pri tem je vsekakor vznemirljivo, da lahko vsaj v določenih delih pri znanstvenih projektih sodelujejo tudi ljubiteljski astronomi.

Verjetno poznate pobude, ki skušajo približati znanost državljanom. Tako so kolegi, ki se ukvarjajo z digitalnim pregledom neba Sloan, želeli določiti, kakšne vrste so več milijonov opazovanih galaksij, ki so lahko eliptičnih ali spiralnih oblik. Postavili so spletno stran z vsemi temi posnetki in potem je dobesedno več milijonov ljudi te slike pregledovalo in po navodilih razvrščalo galaksije po obliki. Ti rezultati so bili znanstveno uporabni in tudi objavljeni. Torej tudi ljudje brez formalne izobrazbe zares lahko pomagajo pri znanstvenih raziskavah.

Znanost je pogosto mešanica pričakovanega in nepričakovanega. Nedavno presenečenje je bilo odkritje delcev, poimenovanih nevtrini, ki imajo zelo veliko energijo in so jih astronomi opazili z detektorjem Ledena kocka, ki je postavljen na južnem polu na Antarktiki. Nedavno je vaša ekipa objavila dokaze, da nekateri od teh težko opazljivih nevtrinskih delcev verjetno prihajajo iz aktivnih središč galaksij ekstremnih lastnosti?

To je zelo vznemirljiva zgodba. Nevtrini so zelo neobičajni delci. So tako majhni, da ne vemo natančno niti, kolikšna je njihova masa. So sicer veliko masivnejši kot elektroni, ki so zares lahki delci. Vendar nevtrini v primerjavi z elektroni zelo šibko integrirajo s preostalo snovjo. Torej jih lahko opazite le, če jim na pot nastavite zelo veliko tarčo. Na Antarktiki so tako zgradili Ledeno kocko. Po večletnem delu jim je v antarktični led uspelo zvrtati veliko mrežo tri kilometre globokih lukenj, v katere so vstavili detektorje svetlobe. Če nevtrino iz vesolja globoko v ledu zadene proton, sproščena energija po kaskadi dogodkov rodi blisk svetlobe, ki ga zaznajo detektorji, zakopani v temi globokega antarktičnega ledu. Znanstveniki, ki delajo z Ledeno kocko, so zaznali kakšnih sto nevtrinov, za katere so prepričani, da so prišli iz vesolja. Žal pa meritev smeri prihoda ni bila dovolj točna, da bi lahko posamezni nevtrino povezali z določenim objektom na nebu. S kolegi sem našel preprosto idejo iz zagate. Ker imajo ti nevtrini zelo veliko energijo, smo njihovo razporeditev primerjali s svetlobo gamažarkov, to je s svetlobo najvišjih energij. Izkazalo se je, da vsaj nekatere od nevtrinov lahko povežemo z izjemno energetsko vrsto aktivnih galaktičnih jeder, ki jim pravimo blazarji. Ti blazarji imajo curke snovi, ki so usmerjeni skoraj natančno v smeri proti Zemlji. S podrobno statistično analizo smo z veliko stopnjo verjetnosti pokazali, da vsaj nekateri od teh nevtrinov zares prihajajo iz teh blazarjev. To odkritje je pomembno za fiziko visokih energij, tudi za fiziko delcev. Odkritje sicer še ni povsem potrjeno, vendar Ledena kocka na južnem tečaju še naprej opazuje nevtrine in bomo tako lahko v prihodnosti z dodatnimi rezultati meritev preverili, ali je naša razlaga o izvoru teh nevtrinov pravilna.

Odkritje je lahko zelo pomembno tudi za druga področja fizike, pripoveduje prof. Paolo Padovani

Najpomembnejše je verjetno vprašanje kozmičnih žarkov. Kljub zavajajočemu imenu so kozmični žarki v resnici delci, ki prihajajo iz vesolja. Njihov obstoj so pred približno sto leti odkrili v Nemčiji. Med njimi so tudi najbolj energetski delci, ki sploh obstajajo. Energija takega delca je lahko neznansko večja od energije nevtrinov, ki jih opazujemo z Ledeno kocko. Zopet pa imamo isto zagato: nihče ne ve, od kod izvirajo ti superenergetski delci. Možna domneva bi bila, da če so blazarji izvor nevtrinov visokih energij, so morda odgovorni tudi za te ekstremne kozmične žarke. Če se ta domneva izkaže za resnično, bi bilo to pomembno za razumevanje delcev izjemno visokih energij iz vesolja.

To bi vsekakor pomenilo tudi boljše razumevanje vesolja!

V bistvu bi potem lahko trdili, da so ti blazarji izjemni pospeševalniki delcev, ki so veliko zmogljivejši od vsega, kar lahko naredimo na Zemlji, recimo v Cernu z Velikim hadronskim pospeševalnikom. Obstoj takih naravnih pospeševalnikov bi veliko povedal tudi o fizikalnih pogojih v neposredni okolici črnih lukenj, ki jih najdemo v središčih teh blazarjev.

Evropski južni observatorij zdaj gradi evropski Ekstremno veliki teleskop, o katerem smo na Valu 202 že večkrat govorili. Ko bo čez sedem let ta teleskop začel delovati, bo to daleč največji teleskop za opazovanja v vidni ali infrardeči svetlobi, ki je bil kdaj zgrajen. Prof. Padovani je seveda najboljši naslov, da nam razloži, kako bo ta naprava pomagala pri raziskavah aktivnih galaktičnih jeder, morda pa tudi pri virtualnem observatoriju, ki ga lahko izkusimo vsi Zemljani.

Nekateri izkušnjo primerjajo s tem, kar je videl Galilei, ko je daljnogled kot prvi obrnil proti nebu. Ta teleskop bo tako velik, da bomo kot prvo lahko videli veliko temnejše izvore, kot je to mogoče zdaj. Pri aktivnih galaksijah bomo recimo videli izvore, ki so zdaj veliko pretemni za kateri koli teleskop. Verjetno pa bo najbolj zanimivo opazovati okolico črnih lukenj, saj so te motor, ki poganja aktivne galaksije. Ko bomo s tem teleskopom opazovali središče naše Galaksije, pri čemer vemo, da je črna luknja z maso, ki je enaka 4,3 milijona naših Sonc, bomo lahko opazovali njeno neposredno okolico, ki nam je zdaj nedosegljiva. Opazovanje zvezd, ki se na tako majhni razdalji od masivne črne luknje lahko gibljejo celo z desetino hitrosti svetlobe, bo tako mogoče v naši in tudi v drugih galaksijah. Z evropskim Ekstremno velikim teleskopom bomo torej lahko opazovali veliko več črnih lukenj in tako razumeli, kako so nastale in kakšen vpliv imajo na svoje galaksije gostiteljice. Vendar pa bi pri tem teleskopu rad povedal tole: seveda imamo ideje, kaj bomo lahko naredili s tem teleskopom. Vendar pa so najpomembnejša odkritja vedno presenečenje. Da je to tako, vemo iz zgodovinskih izkušenj. Ko smo recimo pred desetletji zgradili Hubblov vesoljski teleskop, so ljudje pričakovali pomembne rezultate, recimo meritev vrednosti Hubblove konstante, ki meri hitrost širjenja in starost vesolja. Vendar večine najpomembnejših odkritij nihče ni pričakoval. Torej v znanosti vedno upamo na neplanirana odkritja. In zato je astronomija res zanimiva in vznemirljiva.


Frekvenca X

682 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Vznemirljivost astronomije in junijskega neba

01.06.2017

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

Te dni se lepo vidijo Jupitrove lune in Saturn, opaziti bo mogoče tudi mednarodno vesoljsko postajo in iridijev blisk

Evropski južni observatorij v Čilu gradi velik teleskop. Ko bo ta čez sedem let začel delovati, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa, in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

“Ob junijskih večerih priporočam ogled Jupitrovih lun, okoli polnoči je mogoče opaziti Saturn. V četrtek ob 23.03 bo šla prek neba mednarodna vesoljska postaja. Videti jo bo mogoče 5 minut. Za ljubiteljske astronome priporočam obisk spletne strani www.heavens-above.com

Prof. Tomaž Zwitter

Kako se preleviti v Galilea Galileija

Paolo Padovani je italijanski astronom, ki dela na Evropskem južnem observatoriju v Garchingu v Nemčiji. Zanimajo ga aktivna galaktična jedra, to so galaksije, ki imajo v svojem središču aktivno črno luknjo. Take objekte opazujemo z različnimi vrstami svetlobe: od radijske do infrardeče, ultravijolične ter rentgenskih in gamažarkov. Prof. Padovani sodeluje tudi pri izdelavi evropskega Ekstremno velikega teleskopa, ki ga Evropski južni observatorij gradi v Čilu in bo z zrcalom s premerom 39 metrov največji teleskop na svetu za opazovanja v vidni in infrardeči svetlobi. Prof. Padovani je skupaj s kolegi odkril 30 velikih črnih lukenj zunaj mlečne ceste in velja za enega najbolj cenjenih evropskih astronomov.

Prof. Padovani zadnjih deset let na Evropskem južnem observatoriju vodi Virtualni observatorij, zato smo ga v pogovoru posebej za Frekvenco X zaprosili, naj nam razloži specifiko virtualnega observatorija.  

Namesto da bi za neko opazovanje uporabili običajni teleskop, pri virtualnem observatoriju zložite skupaj podatke prejšnjih opazovanj, v idealnem primeru so to opazovanja vseh teleskopov na Zemlji. S temi podatki nato skušate odgovoriti na svoje znanstveno vprašanje. Seveda pa morate najprej te podatke poiskati, jih razumeti in jih prikazati na različne načine. Torej je bilo in je še vedno precej dela, da so vsa ta opazovanja prosto in v uporabni obliki na voljo vsem astronomom po svetu. Nekatera orodja so seveda zelo preprosta. Vsak si recimo lahko izriše neko galaksijo ali izbrani del neba. Zdaj smo po vsem svetu vzpostavili spletne strani in načine za iskanje podatkov o vseh mogočih vrstah objektov in v različnih vrstah svetlobe. Izraz virtualni tu torej ne pomeni, da tak observatorij ne bi bil uporaben za resno znanstveno delo, ampak le, da imate možnost uporabljati podatke prejšnjih opazovanj po svetu, ki smo jih združili v enotno urejeni in prosto dostopni arhiv podatkov.

Virtualni observatorij torej vsakomur omogoča brskanje po nebu. Prof. Padovani, imate morda idejo, kaj bi lahko poslušalci Frekvence X opazili iz udobja dnevne sobe? Bi lahko morda preverili, ali so v središčih številnih galaksij velike črne luknje?

Načelno je odgovor da, v praksi pa morate vedeti, kam gledati in kateri podatki so pravi za vaš namen. Lahko bi se recimo osredotočili na kakšno bližnjo galaksijo in skušali odkriti, ali se sij svetlobe, ki prihaja iz središča galaksije, sčasoma spreminja. Hitro prižiganje in ugašanje vam namreč pove, da je svetilo majhno, manjše od velikosti, ki jo svetloba prepotuje v tako kratkem času. In če svetilo seva tudi veliko energije, je edina razlaga, da opazujete majhno in svetlo območje v okolici črne luknje. Če povzameva, to se načelno da narediti, vendar potrebujete kar nekaj dodatnih informacij, ki jih seveda tudi lahko najdete na spletu: za začetek je to že seznam obetavnih tarč.

Pri tem je vsekakor vznemirljivo, da lahko vsaj v določenih delih pri znanstvenih projektih sodelujejo tudi ljubiteljski astronomi.

Verjetno poznate pobude, ki skušajo približati znanost državljanom. Tako so kolegi, ki se ukvarjajo z digitalnim pregledom neba Sloan, želeli določiti, kakšne vrste so več milijonov opazovanih galaksij, ki so lahko eliptičnih ali spiralnih oblik. Postavili so spletno stran z vsemi temi posnetki in potem je dobesedno več milijonov ljudi te slike pregledovalo in po navodilih razvrščalo galaksije po obliki. Ti rezultati so bili znanstveno uporabni in tudi objavljeni. Torej tudi ljudje brez formalne izobrazbe zares lahko pomagajo pri znanstvenih raziskavah.

Znanost je pogosto mešanica pričakovanega in nepričakovanega. Nedavno presenečenje je bilo odkritje delcev, poimenovanih nevtrini, ki imajo zelo veliko energijo in so jih astronomi opazili z detektorjem Ledena kocka, ki je postavljen na južnem polu na Antarktiki. Nedavno je vaša ekipa objavila dokaze, da nekateri od teh težko opazljivih nevtrinskih delcev verjetno prihajajo iz aktivnih središč galaksij ekstremnih lastnosti?

To je zelo vznemirljiva zgodba. Nevtrini so zelo neobičajni delci. So tako majhni, da ne vemo natančno niti, kolikšna je njihova masa. So sicer veliko masivnejši kot elektroni, ki so zares lahki delci. Vendar nevtrini v primerjavi z elektroni zelo šibko integrirajo s preostalo snovjo. Torej jih lahko opazite le, če jim na pot nastavite zelo veliko tarčo. Na Antarktiki so tako zgradili Ledeno kocko. Po večletnem delu jim je v antarktični led uspelo zvrtati veliko mrežo tri kilometre globokih lukenj, v katere so vstavili detektorje svetlobe. Če nevtrino iz vesolja globoko v ledu zadene proton, sproščena energija po kaskadi dogodkov rodi blisk svetlobe, ki ga zaznajo detektorji, zakopani v temi globokega antarktičnega ledu. Znanstveniki, ki delajo z Ledeno kocko, so zaznali kakšnih sto nevtrinov, za katere so prepričani, da so prišli iz vesolja. Žal pa meritev smeri prihoda ni bila dovolj točna, da bi lahko posamezni nevtrino povezali z določenim objektom na nebu. S kolegi sem našel preprosto idejo iz zagate. Ker imajo ti nevtrini zelo veliko energijo, smo njihovo razporeditev primerjali s svetlobo gamažarkov, to je s svetlobo najvišjih energij. Izkazalo se je, da vsaj nekatere od nevtrinov lahko povežemo z izjemno energetsko vrsto aktivnih galaktičnih jeder, ki jim pravimo blazarji. Ti blazarji imajo curke snovi, ki so usmerjeni skoraj natančno v smeri proti Zemlji. S podrobno statistično analizo smo z veliko stopnjo verjetnosti pokazali, da vsaj nekateri od teh nevtrinov zares prihajajo iz teh blazarjev. To odkritje je pomembno za fiziko visokih energij, tudi za fiziko delcev. Odkritje sicer še ni povsem potrjeno, vendar Ledena kocka na južnem tečaju še naprej opazuje nevtrine in bomo tako lahko v prihodnosti z dodatnimi rezultati meritev preverili, ali je naša razlaga o izvoru teh nevtrinov pravilna.

Odkritje je lahko zelo pomembno tudi za druga področja fizike, pripoveduje prof. Paolo Padovani

Najpomembnejše je verjetno vprašanje kozmičnih žarkov. Kljub zavajajočemu imenu so kozmični žarki v resnici delci, ki prihajajo iz vesolja. Njihov obstoj so pred približno sto leti odkrili v Nemčiji. Med njimi so tudi najbolj energetski delci, ki sploh obstajajo. Energija takega delca je lahko neznansko večja od energije nevtrinov, ki jih opazujemo z Ledeno kocko. Zopet pa imamo isto zagato: nihče ne ve, od kod izvirajo ti superenergetski delci. Možna domneva bi bila, da če so blazarji izvor nevtrinov visokih energij, so morda odgovorni tudi za te ekstremne kozmične žarke. Če se ta domneva izkaže za resnično, bi bilo to pomembno za razumevanje delcev izjemno visokih energij iz vesolja.

To bi vsekakor pomenilo tudi boljše razumevanje vesolja!

V bistvu bi potem lahko trdili, da so ti blazarji izjemni pospeševalniki delcev, ki so veliko zmogljivejši od vsega, kar lahko naredimo na Zemlji, recimo v Cernu z Velikim hadronskim pospeševalnikom. Obstoj takih naravnih pospeševalnikov bi veliko povedal tudi o fizikalnih pogojih v neposredni okolici črnih lukenj, ki jih najdemo v središčih teh blazarjev.

Evropski južni observatorij zdaj gradi evropski Ekstremno veliki teleskop, o katerem smo na Valu 202 že večkrat govorili. Ko bo čez sedem let ta teleskop začel delovati, bo to daleč največji teleskop za opazovanja v vidni ali infrardeči svetlobi, ki je bil kdaj zgrajen. Prof. Padovani je seveda najboljši naslov, da nam razloži, kako bo ta naprava pomagala pri raziskavah aktivnih galaktičnih jeder, morda pa tudi pri virtualnem observatoriju, ki ga lahko izkusimo vsi Zemljani.

Nekateri izkušnjo primerjajo s tem, kar je videl Galilei, ko je daljnogled kot prvi obrnil proti nebu. Ta teleskop bo tako velik, da bomo kot prvo lahko videli veliko temnejše izvore, kot je to mogoče zdaj. Pri aktivnih galaksijah bomo recimo videli izvore, ki so zdaj veliko pretemni za kateri koli teleskop. Verjetno pa bo najbolj zanimivo opazovati okolico črnih lukenj, saj so te motor, ki poganja aktivne galaksije. Ko bomo s tem teleskopom opazovali središče naše Galaksije, pri čemer vemo, da je črna luknja z maso, ki je enaka 4,3 milijona naših Sonc, bomo lahko opazovali njeno neposredno okolico, ki nam je zdaj nedosegljiva. Opazovanje zvezd, ki se na tako majhni razdalji od masivne črne luknje lahko gibljejo celo z desetino hitrosti svetlobe, bo tako mogoče v naši in tudi v drugih galaksijah. Z evropskim Ekstremno velikim teleskopom bomo torej lahko opazovali veliko več črnih lukenj in tako razumeli, kako so nastale in kakšen vpliv imajo na svoje galaksije gostiteljice. Vendar pa bi pri tem teleskopu rad povedal tole: seveda imamo ideje, kaj bomo lahko naredili s tem teleskopom. Vendar pa so najpomembnejša odkritja vedno presenečenje. Da je to tako, vemo iz zgodovinskih izkušenj. Ko smo recimo pred desetletji zgradili Hubblov vesoljski teleskop, so ljudje pričakovali pomembne rezultate, recimo meritev vrednosti Hubblove konstante, ki meri hitrost širjenja in starost vesolja. Vendar večine najpomembnejših odkritij nihče ni pričakoval. Torej v znanosti vedno upamo na neplanirana odkritja. In zato je astronomija res zanimiva in vznemirljiva.


14.01.2016

Izzivi potovanja v vesolje

Najbrž ne bi pomislili, da imata kuhanje juhe v hribih in izstreljevanje satelitov v tirnico okoli Zemlje kaj skupnega. Gre za kavitacijo, ki povzroča težave v črpalkah raketnih motorjev in v turbinah elektrarn, ne prizanaša ne živalim niti rastlinam, vendar pa take implozije lahko obrnemo tudi nam v prid.


14.01.2016

Izzivi potovanja v vesolje

Najbrž ne bi pomislili, da imata kuhanje juhe v hribih in izstreljevanje satelitov v tirnico okoli Zemlje kaj skupnega. Gre za kavitacijo, ki povzroča težave v črpalkah raketnih motorjev in v turbinah elektrarn, ne prizanaša ne živalim niti rastlinam, vendar pa take implozije lahko obrnemo tudi nam v prid.


07.01.2016

Bo elektrika poganjala tudi potniška letala? Morda pa res

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.


31.12.2015

Znanost v letu 2015

Voda na Marsu, bližnje srečanje s Plutonom, novi temperaturni rekordi, otroci s tremi starši, nevtrini, vrhunski svetovni fiziki v Ljubljani, nova vrsta človečnjaka … To je le nekaj asociacij na znanstveno leto 2015. Kaj so bila najprodornejša odkritja minulih 12 mesecev, katera so najbolj vroča raziskovalna področja in kaj je odmevalo znotraj naših meja, se spominjamo v posebni epizodi Frekvence X.


24.12.2015

Znanost ni slovenska prioriteta

Zakaj Slovenija vlaga v znanost in opremo manj kot v času Jugoslavije, kako je s pogoji dela in dosežki, kakšna je prihodnost slovenske znanosti in inovativnosti. Bo znanost kdaj naša prioriteta? Razmišljata dr. Vito Turk in dr. Martin Klanjšek.


10.12.2015

Podnebne spremembe

Medtem ko je podnebna znanost vse bolj prepričana v podnebne spremembe, zanikanje problema paradoksno narašča. Skepticizem je resda zdrava mera nezaupanja v prehitre sklepe. Skeptik hoče dokaze. A težava pri podnebnih spremembah in onesnaženem okolju na splošno je to, da je dokazov več kot dovolj. Gre bolj za zanikanje resnice, ki nam ni preveč všeč, ker ogroža naš trenutni način življenja.


03.12.2015

Moč nevednosti in negotovosti

Ljudje smo po naravi nagnjeni k temu, da poskušamo čim hitreje razrešiti negotovosti. Če smo v stresu, smo bistveno manj pripravljeni vztrajati pri odprtosti različnih možnosti. Strokovnjaki ugotavljajo, da se zaradi zatekanja k varnim odločitvam povečujejo tudi stereotipi do beguncev, teroristični napadi so vplivali na našo toleranco do sprejemanja alternativnih interpretacij dogajanja. Kako se soočati z negotovostjo in odprtostjo različnih možnosti raziskujemo v pogovorih z uglednim ameriškim socialnim psihologom Ariejem Kruglanskim, zdravnikom dr. Matjažem Zwittrom, statističarko Tino Žnidaršič in demografom dr. Janezom Malačičem.


26.11.2015

Prihodnost samovozečih vozil

Beremo časopis, rešujemo sudoku in brez slabe vesti telefoniramo. To je vožnja prihodnosti s samovozečimi avtomobili. Ti naj bi namreč bili naslednji stroj, ki bo nadomestil nekatera človeška dela in nam olajšal življenje. Vožnja po središčih mesta bi bila s takšnimi vozili manj stresna, avtomobil bi se samodejno odzival na ovire, poleg tega pa bi obstajala zmanjšana potreba po parkirnem prostoru, saj bi nas avtomobil odložil in se sam odpeljal domov.


19.11.2015

Novi materiali za vesoljske raziskave in zemeljsko uporabo

Izstreljevanje satelitov v vesolje je drago. Izstrelitev kilograma tovora v nizko tirnico stane 10 tisoč evrov, cena za bolj oddaljene tire je še precej višja. Osrednja sogovornika oddaje sta dr. Marcos Bavdž in dr. Janez Dolinšek.


12.11.2015

Živali in naša moralna odgovornost zanje

“Ali živali čutijo bolečino?” je vprašanje, ki si ga bomo zastavljali v tokratni Frekvenci X. Znanstveniki in filozofi imajo glede tega različna stališča, pritrdilni odgovor nanj pa bi marsikatero človekovo dejanje postavil v slabo moralno luč. Če namreč živali ne čutijo bolečine, potem so eksperimenti na njih in njihov zakol moralno neproblematična dejanja. Če pa živali to sposobnost imajo, potem se stvari zapletejo in postanejo kočljive.


05.11.2015

V vesolje s Chrisom Hadfieldom

V vesolje je doslej poletelo 551 ljudi, med njimi je tudi kanadski astronavt Chris Hadfield. Hadfield je v vesolje poletel trikrat, več mesecev je bival na mednarodni vesoljski postaji, kjer je posnel tudi videospot za legendarno pesem Space Oddity. Oddajo smo pripravili v sodelovanju s Slavkom Jeričem, avtorjem podcasta Številke, ki je v studio osvetlil nekaj zanimivih statističnih dejstev povezanih s človekovim osvajanjem vesolja.


29.10.2015

PODCAST: Skrivnost človečnjaka Homo naledi

V jami v Južnoafriški republiki so pred kratkim odkrili novo vrsto človečnjaka – vrsto Homo naledi, ki naj bi po mnenju odkriteljev predstavljala do zdaj manjkajoči člen v uganki človeške evolucije. A stvar ni tako preprosta – okostje je precej nenavadno, za povrh pa znanstveniki ne znajo niti določiti, kako staro je. Kdo je bil Homo naledi in kakšna dogodivščina je bilo njegovo izkopavanje?


22.10.2015

PODCAST: Življenje zvezd

Življenje zvezd se zdi v marsičem fantastična zgodba narave, ki omogoča tudi naš obstoj. Razložili bomo, kako sta letošnja Nobelova nagrajenca za fiziko zaokrožila razumevanje jedrskega zlivanja v notranjosti Sonca in pri tem odkrila nove lastnosti delcev z imenom nevtrini. Jedrsko zlivanje primerjamo z nasprotno reakcijo jedrske cepitve, ki poganja elektrarno v Krškem, in pojasnjujemo, da so manjši reaktorji, kot je tisti v Podgorici pri Ljubljani, nepogrešljivi v industrijskih in medicinskih preiskavah in terapijah.


22.10.2015

Podcast s podkasterjem: dr. Luka Ausec

Luka Ausec je doktor biologije. Tekoče bere DNK, deloma pa tudi literaturo. Navdušuje ga pregibanje telesa in možganov v vse smeri, deloma tudi navznoter. Luka je znanstvenik in raziskovalec v zasebnem sektorju. Podkaster. Na Metini listi že dve leti pripravlja MetaPHoDcast. Skupaj z Ano Slavec se pogovarjata z mladimi raziskovalci in raziskovalkami o življenju, vesolju in sploh vsem. Njuni sogovorniki so znanstveniki pred zaključkom doktorata z različnih področij znanosti. Kakšne so razmere med mladimi znanstveniki, kako je s komuniciranjem znanosti, kaj posluša Luka?


15.10.2015

PODCAST: Afera Dieselgate

Potem ko se je majhna ekipa znanstvenikov z univerze Zahodna Virginija lotila preverjanja, kako neki Volkswagnu uspe izdelati tako dobre motorje, je tega avtomobilskega velikana nepričakovano ujela tudi pri goljufanju in zavajanju glede izpustov iz svojih dizelskih vozil. To pot na tnalu ni bil zloglasni ogljikov dioksid, temveč dušikovi oksidi. Kako točno je Volkswagen goljufal in kako so ga ujeli, s čim vse naši avtomobili onesnažujejo ozračje in ali so bencinski motorji čistejši od dizelski, raziskujemo v tokratni Frekvenci X.


09.10.2015

PODCAST: Nobelove nagrade 2015

Smo v tednu razglasitev letošnjih dobitnikov Nobelovih nagrad. Na področju medicine so nagrado prinesla zdravila za zdravljenje malarije in nekaterih parazitskih bolezni, v fiziki je odbor najbolj prepričalo odkritje, da nevtrini, ena izmed skupin osnovnih delcev, vendarle imajo maso, v kemiji pa letos odmevajo dosežki pri odpravljanja poškodb DNK. Pogovarjali smo se tudi s prevajalko del Svetlane Aleksijevič, letošnje Nobelove nagrajenke za književnost.


01.10.2015

Mikročipiranje ljudi

Nič več izgubljenih ali pozabljenih ključev, nič več ukradenih denarnic in predvsem nič več prepoznih diagnoz bolezni. Kako, se sprašujete? Z mikročipiranjem ljudi. Strokovnjaki obljubljajo, da bo imelo vstavljanje mikročipov v človeško telo v prihodnosti velik, verjetno tudi ugoden vpliv na naše življenje. Kakšna pa so etična, medicinska in varnostna vprašanja o takšni praksi, ki ni videti le kot običajna modna muha


24.09.2015

Alan Guth, oče inflacijske teorije vesolja

Alan Guth je tisti fizik, ki je postavil inflacijsko teorijo o vesolju, model pospešenega razširjanja vesolja v prvih trenutkih po velikem poku. Pred tedni je bil gost konference Lepton Photon v Ljubljani. Razložil je, kako so se mu v eni noči izšli vsi računi s katerimi se je uvrstil med legendarne fizike. Alan Guth je eden izmed resnih kandidatov za Nobelovo nagrado za fiziko.


20.08.2015

Konferenca Lepton Photon

V Ljubljani ta teden poteka največja letna konferenca fizike visokih energij "Lepton Photon". Morda lahko pričakujemo nove rezultate z Velikega hadronskega trkalnika v Ženevi na poti do nove fizike, konferenca pa bo ponudila tudi poljudno predavanje očeta inflacijske kozmologije Alana Gutha z MIT.


20.08.2015

Konferenca Lepton Photon

V Ljubljani ta teden poteka največja letna konferenca fizike visokih energij "Lepton Photon". Morda lahko pričakujemo nove rezultate z Velikega hadronskega trkalnika v Ženevi na poti do nove fizike, konferenca pa bo ponudila tudi poljudno predavanje očeta inflacijske kozmologije Alana Gutha z MIT.


Stran 20 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov