Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Vznemirljivost astronomije in junijskega neba

01.06.2017

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

Te dni se lepo vidijo Jupitrove lune in Saturn, opaziti bo mogoče tudi mednarodno vesoljsko postajo in iridijev blisk

Evropski južni observatorij v Čilu gradi velik teleskop. Ko bo ta čez sedem let začel delovati, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa, in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

“Ob junijskih večerih priporočam ogled Jupitrovih lun, okoli polnoči je mogoče opaziti Saturn. V četrtek ob 23.03 bo šla prek neba mednarodna vesoljska postaja. Videti jo bo mogoče 5 minut. Za ljubiteljske astronome priporočam obisk spletne strani www.heavens-above.com

Prof. Tomaž Zwitter

Kako se preleviti v Galilea Galileija

Paolo Padovani je italijanski astronom, ki dela na Evropskem južnem observatoriju v Garchingu v Nemčiji. Zanimajo ga aktivna galaktična jedra, to so galaksije, ki imajo v svojem središču aktivno črno luknjo. Take objekte opazujemo z različnimi vrstami svetlobe: od radijske do infrardeče, ultravijolične ter rentgenskih in gamažarkov. Prof. Padovani sodeluje tudi pri izdelavi evropskega Ekstremno velikega teleskopa, ki ga Evropski južni observatorij gradi v Čilu in bo z zrcalom s premerom 39 metrov največji teleskop na svetu za opazovanja v vidni in infrardeči svetlobi. Prof. Padovani je skupaj s kolegi odkril 30 velikih črnih lukenj zunaj mlečne ceste in velja za enega najbolj cenjenih evropskih astronomov.

Prof. Padovani zadnjih deset let na Evropskem južnem observatoriju vodi Virtualni observatorij, zato smo ga v pogovoru posebej za Frekvenco X zaprosili, naj nam razloži specifiko virtualnega observatorija.  

Namesto da bi za neko opazovanje uporabili običajni teleskop, pri virtualnem observatoriju zložite skupaj podatke prejšnjih opazovanj, v idealnem primeru so to opazovanja vseh teleskopov na Zemlji. S temi podatki nato skušate odgovoriti na svoje znanstveno vprašanje. Seveda pa morate najprej te podatke poiskati, jih razumeti in jih prikazati na različne načine. Torej je bilo in je še vedno precej dela, da so vsa ta opazovanja prosto in v uporabni obliki na voljo vsem astronomom po svetu. Nekatera orodja so seveda zelo preprosta. Vsak si recimo lahko izriše neko galaksijo ali izbrani del neba. Zdaj smo po vsem svetu vzpostavili spletne strani in načine za iskanje podatkov o vseh mogočih vrstah objektov in v različnih vrstah svetlobe. Izraz virtualni tu torej ne pomeni, da tak observatorij ne bi bil uporaben za resno znanstveno delo, ampak le, da imate možnost uporabljati podatke prejšnjih opazovanj po svetu, ki smo jih združili v enotno urejeni in prosto dostopni arhiv podatkov.

Virtualni observatorij torej vsakomur omogoča brskanje po nebu. Prof. Padovani, imate morda idejo, kaj bi lahko poslušalci Frekvence X opazili iz udobja dnevne sobe? Bi lahko morda preverili, ali so v središčih številnih galaksij velike črne luknje?

Načelno je odgovor da, v praksi pa morate vedeti, kam gledati in kateri podatki so pravi za vaš namen. Lahko bi se recimo osredotočili na kakšno bližnjo galaksijo in skušali odkriti, ali se sij svetlobe, ki prihaja iz središča galaksije, sčasoma spreminja. Hitro prižiganje in ugašanje vam namreč pove, da je svetilo majhno, manjše od velikosti, ki jo svetloba prepotuje v tako kratkem času. In če svetilo seva tudi veliko energije, je edina razlaga, da opazujete majhno in svetlo območje v okolici črne luknje. Če povzameva, to se načelno da narediti, vendar potrebujete kar nekaj dodatnih informacij, ki jih seveda tudi lahko najdete na spletu: za začetek je to že seznam obetavnih tarč.

Pri tem je vsekakor vznemirljivo, da lahko vsaj v določenih delih pri znanstvenih projektih sodelujejo tudi ljubiteljski astronomi.

Verjetno poznate pobude, ki skušajo približati znanost državljanom. Tako so kolegi, ki se ukvarjajo z digitalnim pregledom neba Sloan, želeli določiti, kakšne vrste so več milijonov opazovanih galaksij, ki so lahko eliptičnih ali spiralnih oblik. Postavili so spletno stran z vsemi temi posnetki in potem je dobesedno več milijonov ljudi te slike pregledovalo in po navodilih razvrščalo galaksije po obliki. Ti rezultati so bili znanstveno uporabni in tudi objavljeni. Torej tudi ljudje brez formalne izobrazbe zares lahko pomagajo pri znanstvenih raziskavah.

Znanost je pogosto mešanica pričakovanega in nepričakovanega. Nedavno presenečenje je bilo odkritje delcev, poimenovanih nevtrini, ki imajo zelo veliko energijo in so jih astronomi opazili z detektorjem Ledena kocka, ki je postavljen na južnem polu na Antarktiki. Nedavno je vaša ekipa objavila dokaze, da nekateri od teh težko opazljivih nevtrinskih delcev verjetno prihajajo iz aktivnih središč galaksij ekstremnih lastnosti?

To je zelo vznemirljiva zgodba. Nevtrini so zelo neobičajni delci. So tako majhni, da ne vemo natančno niti, kolikšna je njihova masa. So sicer veliko masivnejši kot elektroni, ki so zares lahki delci. Vendar nevtrini v primerjavi z elektroni zelo šibko integrirajo s preostalo snovjo. Torej jih lahko opazite le, če jim na pot nastavite zelo veliko tarčo. Na Antarktiki so tako zgradili Ledeno kocko. Po večletnem delu jim je v antarktični led uspelo zvrtati veliko mrežo tri kilometre globokih lukenj, v katere so vstavili detektorje svetlobe. Če nevtrino iz vesolja globoko v ledu zadene proton, sproščena energija po kaskadi dogodkov rodi blisk svetlobe, ki ga zaznajo detektorji, zakopani v temi globokega antarktičnega ledu. Znanstveniki, ki delajo z Ledeno kocko, so zaznali kakšnih sto nevtrinov, za katere so prepričani, da so prišli iz vesolja. Žal pa meritev smeri prihoda ni bila dovolj točna, da bi lahko posamezni nevtrino povezali z določenim objektom na nebu. S kolegi sem našel preprosto idejo iz zagate. Ker imajo ti nevtrini zelo veliko energijo, smo njihovo razporeditev primerjali s svetlobo gamažarkov, to je s svetlobo najvišjih energij. Izkazalo se je, da vsaj nekatere od nevtrinov lahko povežemo z izjemno energetsko vrsto aktivnih galaktičnih jeder, ki jim pravimo blazarji. Ti blazarji imajo curke snovi, ki so usmerjeni skoraj natančno v smeri proti Zemlji. S podrobno statistično analizo smo z veliko stopnjo verjetnosti pokazali, da vsaj nekateri od teh nevtrinov zares prihajajo iz teh blazarjev. To odkritje je pomembno za fiziko visokih energij, tudi za fiziko delcev. Odkritje sicer še ni povsem potrjeno, vendar Ledena kocka na južnem tečaju še naprej opazuje nevtrine in bomo tako lahko v prihodnosti z dodatnimi rezultati meritev preverili, ali je naša razlaga o izvoru teh nevtrinov pravilna.

Odkritje je lahko zelo pomembno tudi za druga področja fizike, pripoveduje prof. Paolo Padovani

Najpomembnejše je verjetno vprašanje kozmičnih žarkov. Kljub zavajajočemu imenu so kozmični žarki v resnici delci, ki prihajajo iz vesolja. Njihov obstoj so pred približno sto leti odkrili v Nemčiji. Med njimi so tudi najbolj energetski delci, ki sploh obstajajo. Energija takega delca je lahko neznansko večja od energije nevtrinov, ki jih opazujemo z Ledeno kocko. Zopet pa imamo isto zagato: nihče ne ve, od kod izvirajo ti superenergetski delci. Možna domneva bi bila, da če so blazarji izvor nevtrinov visokih energij, so morda odgovorni tudi za te ekstremne kozmične žarke. Če se ta domneva izkaže za resnično, bi bilo to pomembno za razumevanje delcev izjemno visokih energij iz vesolja.

To bi vsekakor pomenilo tudi boljše razumevanje vesolja!

V bistvu bi potem lahko trdili, da so ti blazarji izjemni pospeševalniki delcev, ki so veliko zmogljivejši od vsega, kar lahko naredimo na Zemlji, recimo v Cernu z Velikim hadronskim pospeševalnikom. Obstoj takih naravnih pospeševalnikov bi veliko povedal tudi o fizikalnih pogojih v neposredni okolici črnih lukenj, ki jih najdemo v središčih teh blazarjev.

Evropski južni observatorij zdaj gradi evropski Ekstremno veliki teleskop, o katerem smo na Valu 202 že večkrat govorili. Ko bo čez sedem let ta teleskop začel delovati, bo to daleč največji teleskop za opazovanja v vidni ali infrardeči svetlobi, ki je bil kdaj zgrajen. Prof. Padovani je seveda najboljši naslov, da nam razloži, kako bo ta naprava pomagala pri raziskavah aktivnih galaktičnih jeder, morda pa tudi pri virtualnem observatoriju, ki ga lahko izkusimo vsi Zemljani.

Nekateri izkušnjo primerjajo s tem, kar je videl Galilei, ko je daljnogled kot prvi obrnil proti nebu. Ta teleskop bo tako velik, da bomo kot prvo lahko videli veliko temnejše izvore, kot je to mogoče zdaj. Pri aktivnih galaksijah bomo recimo videli izvore, ki so zdaj veliko pretemni za kateri koli teleskop. Verjetno pa bo najbolj zanimivo opazovati okolico črnih lukenj, saj so te motor, ki poganja aktivne galaksije. Ko bomo s tem teleskopom opazovali središče naše Galaksije, pri čemer vemo, da je črna luknja z maso, ki je enaka 4,3 milijona naših Sonc, bomo lahko opazovali njeno neposredno okolico, ki nam je zdaj nedosegljiva. Opazovanje zvezd, ki se na tako majhni razdalji od masivne črne luknje lahko gibljejo celo z desetino hitrosti svetlobe, bo tako mogoče v naši in tudi v drugih galaksijah. Z evropskim Ekstremno velikim teleskopom bomo torej lahko opazovali veliko več črnih lukenj in tako razumeli, kako so nastale in kakšen vpliv imajo na svoje galaksije gostiteljice. Vendar pa bi pri tem teleskopu rad povedal tole: seveda imamo ideje, kaj bomo lahko naredili s tem teleskopom. Vendar pa so najpomembnejša odkritja vedno presenečenje. Da je to tako, vemo iz zgodovinskih izkušenj. Ko smo recimo pred desetletji zgradili Hubblov vesoljski teleskop, so ljudje pričakovali pomembne rezultate, recimo meritev vrednosti Hubblove konstante, ki meri hitrost širjenja in starost vesolja. Vendar večine najpomembnejših odkritij nihče ni pričakoval. Torej v znanosti vedno upamo na neplanirana odkritja. In zato je astronomija res zanimiva in vznemirljiva.


Frekvenca X

682 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Vznemirljivost astronomije in junijskega neba

01.06.2017

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

Te dni se lepo vidijo Jupitrove lune in Saturn, opaziti bo mogoče tudi mednarodno vesoljsko postajo in iridijev blisk

Evropski južni observatorij v Čilu gradi velik teleskop. Ko bo ta čez sedem let začel delovati, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa, in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

“Ob junijskih večerih priporočam ogled Jupitrovih lun, okoli polnoči je mogoče opaziti Saturn. V četrtek ob 23.03 bo šla prek neba mednarodna vesoljska postaja. Videti jo bo mogoče 5 minut. Za ljubiteljske astronome priporočam obisk spletne strani www.heavens-above.com

Prof. Tomaž Zwitter

Kako se preleviti v Galilea Galileija

Paolo Padovani je italijanski astronom, ki dela na Evropskem južnem observatoriju v Garchingu v Nemčiji. Zanimajo ga aktivna galaktična jedra, to so galaksije, ki imajo v svojem središču aktivno črno luknjo. Take objekte opazujemo z različnimi vrstami svetlobe: od radijske do infrardeče, ultravijolične ter rentgenskih in gamažarkov. Prof. Padovani sodeluje tudi pri izdelavi evropskega Ekstremno velikega teleskopa, ki ga Evropski južni observatorij gradi v Čilu in bo z zrcalom s premerom 39 metrov največji teleskop na svetu za opazovanja v vidni in infrardeči svetlobi. Prof. Padovani je skupaj s kolegi odkril 30 velikih črnih lukenj zunaj mlečne ceste in velja za enega najbolj cenjenih evropskih astronomov.

Prof. Padovani zadnjih deset let na Evropskem južnem observatoriju vodi Virtualni observatorij, zato smo ga v pogovoru posebej za Frekvenco X zaprosili, naj nam razloži specifiko virtualnega observatorija.  

Namesto da bi za neko opazovanje uporabili običajni teleskop, pri virtualnem observatoriju zložite skupaj podatke prejšnjih opazovanj, v idealnem primeru so to opazovanja vseh teleskopov na Zemlji. S temi podatki nato skušate odgovoriti na svoje znanstveno vprašanje. Seveda pa morate najprej te podatke poiskati, jih razumeti in jih prikazati na različne načine. Torej je bilo in je še vedno precej dela, da so vsa ta opazovanja prosto in v uporabni obliki na voljo vsem astronomom po svetu. Nekatera orodja so seveda zelo preprosta. Vsak si recimo lahko izriše neko galaksijo ali izbrani del neba. Zdaj smo po vsem svetu vzpostavili spletne strani in načine za iskanje podatkov o vseh mogočih vrstah objektov in v različnih vrstah svetlobe. Izraz virtualni tu torej ne pomeni, da tak observatorij ne bi bil uporaben za resno znanstveno delo, ampak le, da imate možnost uporabljati podatke prejšnjih opazovanj po svetu, ki smo jih združili v enotno urejeni in prosto dostopni arhiv podatkov.

Virtualni observatorij torej vsakomur omogoča brskanje po nebu. Prof. Padovani, imate morda idejo, kaj bi lahko poslušalci Frekvence X opazili iz udobja dnevne sobe? Bi lahko morda preverili, ali so v središčih številnih galaksij velike črne luknje?

Načelno je odgovor da, v praksi pa morate vedeti, kam gledati in kateri podatki so pravi za vaš namen. Lahko bi se recimo osredotočili na kakšno bližnjo galaksijo in skušali odkriti, ali se sij svetlobe, ki prihaja iz središča galaksije, sčasoma spreminja. Hitro prižiganje in ugašanje vam namreč pove, da je svetilo majhno, manjše od velikosti, ki jo svetloba prepotuje v tako kratkem času. In če svetilo seva tudi veliko energije, je edina razlaga, da opazujete majhno in svetlo območje v okolici črne luknje. Če povzameva, to se načelno da narediti, vendar potrebujete kar nekaj dodatnih informacij, ki jih seveda tudi lahko najdete na spletu: za začetek je to že seznam obetavnih tarč.

Pri tem je vsekakor vznemirljivo, da lahko vsaj v določenih delih pri znanstvenih projektih sodelujejo tudi ljubiteljski astronomi.

Verjetno poznate pobude, ki skušajo približati znanost državljanom. Tako so kolegi, ki se ukvarjajo z digitalnim pregledom neba Sloan, želeli določiti, kakšne vrste so več milijonov opazovanih galaksij, ki so lahko eliptičnih ali spiralnih oblik. Postavili so spletno stran z vsemi temi posnetki in potem je dobesedno več milijonov ljudi te slike pregledovalo in po navodilih razvrščalo galaksije po obliki. Ti rezultati so bili znanstveno uporabni in tudi objavljeni. Torej tudi ljudje brez formalne izobrazbe zares lahko pomagajo pri znanstvenih raziskavah.

Znanost je pogosto mešanica pričakovanega in nepričakovanega. Nedavno presenečenje je bilo odkritje delcev, poimenovanih nevtrini, ki imajo zelo veliko energijo in so jih astronomi opazili z detektorjem Ledena kocka, ki je postavljen na južnem polu na Antarktiki. Nedavno je vaša ekipa objavila dokaze, da nekateri od teh težko opazljivih nevtrinskih delcev verjetno prihajajo iz aktivnih središč galaksij ekstremnih lastnosti?

To je zelo vznemirljiva zgodba. Nevtrini so zelo neobičajni delci. So tako majhni, da ne vemo natančno niti, kolikšna je njihova masa. So sicer veliko masivnejši kot elektroni, ki so zares lahki delci. Vendar nevtrini v primerjavi z elektroni zelo šibko integrirajo s preostalo snovjo. Torej jih lahko opazite le, če jim na pot nastavite zelo veliko tarčo. Na Antarktiki so tako zgradili Ledeno kocko. Po večletnem delu jim je v antarktični led uspelo zvrtati veliko mrežo tri kilometre globokih lukenj, v katere so vstavili detektorje svetlobe. Če nevtrino iz vesolja globoko v ledu zadene proton, sproščena energija po kaskadi dogodkov rodi blisk svetlobe, ki ga zaznajo detektorji, zakopani v temi globokega antarktičnega ledu. Znanstveniki, ki delajo z Ledeno kocko, so zaznali kakšnih sto nevtrinov, za katere so prepričani, da so prišli iz vesolja. Žal pa meritev smeri prihoda ni bila dovolj točna, da bi lahko posamezni nevtrino povezali z določenim objektom na nebu. S kolegi sem našel preprosto idejo iz zagate. Ker imajo ti nevtrini zelo veliko energijo, smo njihovo razporeditev primerjali s svetlobo gamažarkov, to je s svetlobo najvišjih energij. Izkazalo se je, da vsaj nekatere od nevtrinov lahko povežemo z izjemno energetsko vrsto aktivnih galaktičnih jeder, ki jim pravimo blazarji. Ti blazarji imajo curke snovi, ki so usmerjeni skoraj natančno v smeri proti Zemlji. S podrobno statistično analizo smo z veliko stopnjo verjetnosti pokazali, da vsaj nekateri od teh nevtrinov zares prihajajo iz teh blazarjev. To odkritje je pomembno za fiziko visokih energij, tudi za fiziko delcev. Odkritje sicer še ni povsem potrjeno, vendar Ledena kocka na južnem tečaju še naprej opazuje nevtrine in bomo tako lahko v prihodnosti z dodatnimi rezultati meritev preverili, ali je naša razlaga o izvoru teh nevtrinov pravilna.

Odkritje je lahko zelo pomembno tudi za druga področja fizike, pripoveduje prof. Paolo Padovani

Najpomembnejše je verjetno vprašanje kozmičnih žarkov. Kljub zavajajočemu imenu so kozmični žarki v resnici delci, ki prihajajo iz vesolja. Njihov obstoj so pred približno sto leti odkrili v Nemčiji. Med njimi so tudi najbolj energetski delci, ki sploh obstajajo. Energija takega delca je lahko neznansko večja od energije nevtrinov, ki jih opazujemo z Ledeno kocko. Zopet pa imamo isto zagato: nihče ne ve, od kod izvirajo ti superenergetski delci. Možna domneva bi bila, da če so blazarji izvor nevtrinov visokih energij, so morda odgovorni tudi za te ekstremne kozmične žarke. Če se ta domneva izkaže za resnično, bi bilo to pomembno za razumevanje delcev izjemno visokih energij iz vesolja.

To bi vsekakor pomenilo tudi boljše razumevanje vesolja!

V bistvu bi potem lahko trdili, da so ti blazarji izjemni pospeševalniki delcev, ki so veliko zmogljivejši od vsega, kar lahko naredimo na Zemlji, recimo v Cernu z Velikim hadronskim pospeševalnikom. Obstoj takih naravnih pospeševalnikov bi veliko povedal tudi o fizikalnih pogojih v neposredni okolici črnih lukenj, ki jih najdemo v središčih teh blazarjev.

Evropski južni observatorij zdaj gradi evropski Ekstremno veliki teleskop, o katerem smo na Valu 202 že večkrat govorili. Ko bo čez sedem let ta teleskop začel delovati, bo to daleč največji teleskop za opazovanja v vidni ali infrardeči svetlobi, ki je bil kdaj zgrajen. Prof. Padovani je seveda najboljši naslov, da nam razloži, kako bo ta naprava pomagala pri raziskavah aktivnih galaktičnih jeder, morda pa tudi pri virtualnem observatoriju, ki ga lahko izkusimo vsi Zemljani.

Nekateri izkušnjo primerjajo s tem, kar je videl Galilei, ko je daljnogled kot prvi obrnil proti nebu. Ta teleskop bo tako velik, da bomo kot prvo lahko videli veliko temnejše izvore, kot je to mogoče zdaj. Pri aktivnih galaksijah bomo recimo videli izvore, ki so zdaj veliko pretemni za kateri koli teleskop. Verjetno pa bo najbolj zanimivo opazovati okolico črnih lukenj, saj so te motor, ki poganja aktivne galaksije. Ko bomo s tem teleskopom opazovali središče naše Galaksije, pri čemer vemo, da je črna luknja z maso, ki je enaka 4,3 milijona naših Sonc, bomo lahko opazovali njeno neposredno okolico, ki nam je zdaj nedosegljiva. Opazovanje zvezd, ki se na tako majhni razdalji od masivne črne luknje lahko gibljejo celo z desetino hitrosti svetlobe, bo tako mogoče v naši in tudi v drugih galaksijah. Z evropskim Ekstremno velikim teleskopom bomo torej lahko opazovali veliko več črnih lukenj in tako razumeli, kako so nastale in kakšen vpliv imajo na svoje galaksije gostiteljice. Vendar pa bi pri tem teleskopu rad povedal tole: seveda imamo ideje, kaj bomo lahko naredili s tem teleskopom. Vendar pa so najpomembnejša odkritja vedno presenečenje. Da je to tako, vemo iz zgodovinskih izkušenj. Ko smo recimo pred desetletji zgradili Hubblov vesoljski teleskop, so ljudje pričakovali pomembne rezultate, recimo meritev vrednosti Hubblove konstante, ki meri hitrost širjenja in starost vesolja. Vendar večine najpomembnejših odkritij nihče ni pričakoval. Torej v znanosti vedno upamo na neplanirana odkritja. In zato je astronomija res zanimiva in vznemirljiva.


26.10.2023

Znanost v oktobru: Od bisfenola A do misije na asteroid

Pregledi meseca so nazaj. Tokrat pregledujemo najopaznejša znanstvena odkritja oktobra. Nobelove nagrade smo že obdelali, v današnji oddaji se bomo posvetili Zoisovim nagradam, ki so nekakšne slovenske Nobelove nagrade. Gostimo Zoisovo nagrajenko za posebne dosežke na področju farmacevtske kemije in toksikologije dr. Lucijo Peterlin Mašič. S kolegi raziskuje nadomestke bisfenola A, spojine, ki jo uporabljajo za pridobitev plastike, BPA pa je problematičen, ker je motilec endokrinega sistema. Slišite lahko tudi nekaj drugih novic iz sveta znanosti.


19.10.2023

Vinska mušica - drobna junakinja, ki tlakuje pot genetiki

Postavite na mizo skledo sadja in v hipu bodo tam. Vzamejo se tako rekoč iz nič – majhne, rjave, z velikanskimi očmi. Te drobne in za mnoge tako moteče vinske mušice, ki jih je največ prav jeseni, imajo neverjetno znanstveno pot, podpisujejo se pod kar šest Nobelovih nagrad.


12.10.2023

Na misiji k Jupitrovim štirim karizmatičnim družicam

Jupiter je daleč največji planet v sončnem sistemu – več kot dvakrat večji od vseh drugih planetov skupaj! Kljub neznansko lepim umetelnim progam in lisam vladajo tam sila neprijazno okolje, ledeno mrzle temperature in pošastno sevanje. In zakaj nas ta tako neprijazen svet potem tako zanima? Zakaj k njegovim štirim družicam, Galilejevim lunam, pošiljamo novo evropsko sondo? Odgovor je preprost – voda in skrito življenje. Če bi bila naša Zemlja frnikola, bi bil Jupiter velik kot košarkarska žoga. K njemu se je aprila podala tudi evropska sonda Juice.


05.10.2023

Nobelove nagrade 2023: o mRNK cepivih, atosekundah in kvantnih pikah

Raziskave elektronov v atomih in molekulah, ki se odvijajo na nepredstavljivo kratkih časovnih skalah, znanstvena dognanja v ozadju mRNK cepiv, ki so pomembno zaznamovala pandemijo koronavirusa, in pa kvantne pike, polprevodniške nanostrukture, ki se jih uporablja na več različnih tehnoloških področjih. To so presežki, za katere bodo letos v Stockholmu med drugim podelili Nobelove nagrade. Kaj natanko so odkrili izpostavljeni znanstveniki, kako se te raziskave kažejo v praksi in kakšne so njihove življenjske zgodbe, analiziramo v Frekvenci X, ki si tokrat podaja roke z znanstveno redakcijo Prvega programa Radia Slovenija.


28.09.2023

Josef Ressel: Od vijaka do junaka

Josef Ressel je bil morda eden zadnjih res širokih mislecev. Po osnovni izobrazbi gozdar, je pomemben pečat pustil na zelo različnih področjih. Tehnike in inovacij se je loteval na način Leonarda Da Vincija. Najbolj je znan po izumu ladijskega vijaka, pomembna je njegova vloga pri pogozdovanju Krasa, bil je hidrotehnični strokovnjak. V prvem obdobju industrijske revolucije se je ukvarjal z novimi materiali in tehnologijami, zlasti pa ga je pritegnilo raziskovanje možnosti tehnoloških izboljšav v prometu in energetiki. Med zanimivejše ideje lahko štejemo tudi brezsmradno stranišče in lokomobil. Deloval je na Dolenjskem, na Krasu, v Trstu in Ljubljani, kjer je umrl leta 1857. Josef Ressel je bil češko-nemških korenin, v Ljubljani ima svojo cesto in spomenik, v Šentjerneju so mu posvetili metuljček in penino, načrtujejo tudi Resslov most. Kakšna je njegova zapuščina?


21.09.2023

Jožef Stefan: Eden največjih fizikov svojega časa

Kdo je bil Jožef Stefan? Čeprav se nam zdi, da ga vsi po malem poznamo, saj je po njem poimenovan največji znanstveni inštitut v Sloveniji, pa o njem v resnici vemo zelo malo. Znano je, da je bil otrok revnih in nepismenih staršev, s svojo nadarjenostjo in osredotočenostjo pa je kmalu dokazal, da je velik učenjak, postal je tudi eden vodilnih znanstvenikov v avstrijskem cesarstvu. Fizika je bila njegovo življenje - dobesedno, veliko dni je prespal kar na inštitutu, ki ga je vodil, ker je bil tako zelo predan delu. Poročil se je šele pri 56 letih in v sreči v dvoje je užival le kakšno leto, saj je kmalu po poroki umrl zaradi možganske kapi. Kdo je bil torej ta veliki fizik, edini znanstvenik slovenskega rodu, po katerem je poimenovan tudi fizikalni Stefan-Boltzmannov zakon?


14.09.2023

Alma Sodnik: Ženska, ki je stremela k iskanju čiste resnice

Njeno življenje ni bilo lahko. Izgubila je edinega otroka, podpirala v vojni poškodovanega moža in kariero gradila v moškem akademskem svetu ter v času najostrejše stalinizacije.


07.09.2023

Milan Vidmar: pionirski elektrotehnik, šahovski velemojster in legendarni profesor

Ogrevanje pred novo sezono Frekvence X začenjamo z zavojem v preteklost, k znanstvenikom, ki so se rodili ali delovali na slovenskih tleh in so splošni javnosti manj znani. Kot prvemu se bomo posvetili profesorju Milanu Vidmarju, ki je zaznamoval razvoj slovenske elektrotehnike in prva leta ljubljanske Univerze. O profesorju Vidmarju kot pionirskem elektrotehniku, vrhunskemu šahovskemu velemojstru in velikem borcu, ki je vplival na družbeni in gospodarski razvoj slovenskega ozemlja v svojem času, se je Jan Grilc pogovarjali s tremi gosti, ki jim je profesor Vidmar vsakemu po svoje zaznamoval življenjsko pot. Kdo je bil torej človek, ki je odločilno vplival na razvoj Univerze v zgodnjih letih, spoznal Nikolo Teslo in odigral legendarne partije z največjimi velemojstri šaha v svojem času? Gosti: - prof. dr. Rafael Cajhen, predavatelj, mentor in raziskovalec na Fakulteti za elektrotehniko - prof. dr. Maks Babuder, dolgoletni direktor Elektrotehniškega inštituta Milan Vidmar - prof. dr. Ivan Bratko, Fakulteta za računalništvo in informatiko, šahovski mojstrski kandidat


29.06.2023

Bolni - a le na dopustu?

Delaš, se trudiš, da boš pred dopustom storil vse, kar moraš, končno odideš iz pisarne, ugasneš luč, odzdraviš kolegom in v glavi snuješ načrte za dopust. Pakiraš, se voziš na morje, potem pa kar naenkrat bolečine v mišicah, smrkanje, morda celo vročina. Znano? Marsikomu verjetno res. Preddopustniška Frekvenca X se torej odpravlja na teren tako imenovane bolezni prostočasja. Zakaj se zgodi, da pogosto zbolimo ravno takrat, ko naj bi se imeli fino. Torej - na dopustu.


22.06.2023

Namakanje

Predzadnja Frekvenca X v letošnji sezoni se tik pred poletno vročino poglablja v namakalne sisteme. Prav ti so bili osnova, na kateri so med drugim zrasle antične civilizacije, od Kitajske do Egipta, hkrati pa so tudi danes marsikje osnova kmetijstva. V Grčiji, Italiji in Španiji na primer namakajo skoraj polovico kmetijskih površin, Slovenija pa le en odstotek. Kakšen je razlog, kako je z vodo in še marsikaj zanimivega, je o namakalnih sistemih izvedela Maja Ratej.


15.06.2023

Ko popusti jez

Po siloviti eksploziji in porušitvi jezu Nova Kahovka, ki je v južni Ukrajini na reki Dneper zadrževal 19 kubičnih kilometrov ali za skoraj pet Tržaških zalivov vode, so obsežni deli pokrajine še vedno poplavljeni, več deset tisoč ljudi pa razseljenih. V tokratni Frekvenci X pri strokovnjakih za visoke vodne pregrade preverjamo, kako zahteven gradbeni podvig so jezovi in katere porušitve jezov so odmevale v zgodovini. Posvetimo pa se tudi nekaterim največjim orjakom med jezovi na svetu.


08.06.2023

Ko se izštekamo ...

Uživanje na glasbenih koncertih ima svoje čare, občutka avtentične interakcije ne more nadomestiti nobena tehnologija. Živi glasbeni performansi nas močno pritegnejo, tako pri nastopajočih kot pri publiki sprožijo posebne občutke. Kaj se takrat dogaja v naših možganih, kako na nas vpliva učinek množice, kakšni muzikološki momenti nas prepričajo in zakaj je ubiranje “izštekanih” poti tako privlačno.


01.06.2023

Znanost v maju: O otroku treh staršev, frontotemporalni demenci in Znanosti na cesti

V prvi junijski Frekvenci X se oziramo v maj, ko je odmevalo rojstvo otroka, ki nosi DNK treh oseb. Pri dveh pomembnih svetovnih študijah so sodelovali tudi slovenski znanstveniki – v prvi o proteinu FUS, ki je eden od ključnih dejavnikov za nastanek frontotemporalne demence, v drugi pa o tem, da lahko ženske prekinejo hormonsko terapijo pri zdravljenju raka dojk z namenom zanositve in po porodu spet nadaljujejo z njo. Spoznamo tudi aktualnega mentorja leta, gostujoča urednica in gostja pa je tokrat dr. Saša Novak, komunikatorica znanosti 2022 in gonilno srce projekta Znanost na cesti, ki že deset let povezuje javnost z znanostjo.


25.05.2023

Pogovoriti se moramo o ChatGPT-ju

Povzetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X. ChatGPT je kot jezikovni model že osvojil jezikovne bravure človeškega sporazumevanja in prebral nesluteno količino vsega, kar se skriva na svetovnem spletu, a strokovnjake vse bolj bega, simptom česa je brbotanje umetne inteligence v globinah. Ne gre le za vprašanja, katere poklice in dejavnosti vse bo umetna inteligenca v prihodnosti nadomestila, nadgradila, olajšala ali izpodrinila ter kako nam bo v pomoč na skoraj vseh področjih, pač pa za negotovost, česa vsega bo še sposobna, a se nam o tem danes še sanja ne. Kako bo zakoličila prihodnost in kako se bomo v novih okoliščinah znašli mi, ljudje? Kaj bo z vrednotami modrosti, učenja in intelektualnega napredka, v kakšno valuto se bo prelevilo znanje in kako se bo na to pripravil izobraževalni sistem?


25.05.2023

Pogovoriti se moramo o ChatGPT-ju (celotna okrogla miza)

Celoten posnetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X.


11.05.2023

Evropo so nekoč poseljevali temnopolti in modrooki ljudje

Ste vedeli, da so lahko geni zelo zgovoren vodnik po davni zgodovini? No, vsaj postali so, zdaj, ko jih zmoremo neznansko hitro in učinkovito odčitavati. V samo nekaj letih so raziskovalci na tem področju prečesali 20 000 pradavnih genomov in odkrili marsikaj presenetljivega o naši davni preteklosti.


04.05.2023

Po poteh mrtvih in o zgodovini žensk v tranzicijskih obdobjih

Vloga mrtvih v življenju posameznikov v sodobni družbi in Povojne tranzicije v perspektivi spola – primer severovzhodnega jadranskega prostora sta dve raziskovalni temi, ki so ju izbrali pri prestižnem projektu Evropskega raziskovalnega sveta ERC. Omenjena glavna evropska organizacija s financiranjem pomaga vrhunskim znanstvenikom pri raziskovanju določene teme, ki v znanstvenem svetu še ni bila obravnavana. Za svojo originalnost sta bili nagrajeni profesorica Mirjam Mencej z oddelka za etnologijo in kulturno antropologijo in profesorica Marta Verginella z oddelka za zgodovino, obe delujeta na ljubljanski filozofski fakulteti. Govorita o tem, kakšen raziskovalni zagon jima je dal projekt, kaj pravzaprav raziskujeta in kako težko je pridobiti financiranje projekta ERC.


20.04.2023

Kmetijstvo prihodnosti, 3. del: Robotski sesalniki gnoja, molzni roboti in prihodnost natisnjenih zrezkov

V tretjem delu serije Kmetijstvo prihodnosti se prepričamo, da krave in roboti zelo dobro sobivajo in sodelujejo. V moderni živinoreji je raba robotskih sesalnikov gnoja in molznih robotov zelo napredovala, živali se bolje počutijo, manjši pa je tudi okoljski vpliv. Glede živinoreje ostaja odprtih več vprašanj: kako močno v resnici reja živali obremenjuje okolje, kaj bi lahko dosegli s spremembo prehranjevalnih navad in ali prihodnost prinaša umetno meso? Ob koncu tudi izdelamo zrezek s 3D-tiskanjem.


13.04.2023

Kmetijstvo prihodnosti, 2. del: Rastlinjaki pod nadzorom umetne inteligence in podzemni vrtovi

V drugem delu serije Kmetijstvo prihodnosti se sprašujemo, kako se spreminjajo načini pridelovanja zelenjave. Sprehodimo se po enem najmodernejših rastlinjakov v Sloveniji, kjer rast desettisočev glav solat nadzoruje umetna inteligenca in kjer so pogoji za rast natančno določeni. Razmišljamo o tem, kje je smiselno postavljati rastlinjake in kako moramo spreminjati bolj klasične postopke talne rasti, hkrati pa ugotavljamo, ali so urbane vertikalne farme le modna muha ali tehnologija prihodnosti. Poskusimo pa tudi vesoljski paradižnik.


06.04.2023

Kmetijstvo prihodnosti, 1. del: Oživljena prst in fižol, pripravljen na podnebne spremembe

Začenjamo z novo serijo, ki smo jo poimenovali kar Kmetijstvo prihodnosti. Na področju pridelave hrane nas čaka mnogo izzivov - hitra rast svetovnega prebivalstva pomeni vse večje potrebe po hrani, hkrati pa podnebne spremembe in z njimi povezani vremenski ekstremi vse bolj otežujejo pridelavo.


Stran 3 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov