Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Vznemirljivost astronomije in junijskega neba

01.06.2017

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

Te dni se lepo vidijo Jupitrove lune in Saturn, opaziti bo mogoče tudi mednarodno vesoljsko postajo in iridijev blisk

Evropski južni observatorij v Čilu gradi velik teleskop. Ko bo ta čez sedem let začel delovati, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa, in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

“Ob junijskih večerih priporočam ogled Jupitrovih lun, okoli polnoči je mogoče opaziti Saturn. V četrtek ob 23.03 bo šla prek neba mednarodna vesoljska postaja. Videti jo bo mogoče 5 minut. Za ljubiteljske astronome priporočam obisk spletne strani www.heavens-above.com

Prof. Tomaž Zwitter

Kako se preleviti v Galilea Galileija

Paolo Padovani je italijanski astronom, ki dela na Evropskem južnem observatoriju v Garchingu v Nemčiji. Zanimajo ga aktivna galaktična jedra, to so galaksije, ki imajo v svojem središču aktivno črno luknjo. Take objekte opazujemo z različnimi vrstami svetlobe: od radijske do infrardeče, ultravijolične ter rentgenskih in gamažarkov. Prof. Padovani sodeluje tudi pri izdelavi evropskega Ekstremno velikega teleskopa, ki ga Evropski južni observatorij gradi v Čilu in bo z zrcalom s premerom 39 metrov največji teleskop na svetu za opazovanja v vidni in infrardeči svetlobi. Prof. Padovani je skupaj s kolegi odkril 30 velikih črnih lukenj zunaj mlečne ceste in velja za enega najbolj cenjenih evropskih astronomov.

Prof. Padovani zadnjih deset let na Evropskem južnem observatoriju vodi Virtualni observatorij, zato smo ga v pogovoru posebej za Frekvenco X zaprosili, naj nam razloži specifiko virtualnega observatorija.  

Namesto da bi za neko opazovanje uporabili običajni teleskop, pri virtualnem observatoriju zložite skupaj podatke prejšnjih opazovanj, v idealnem primeru so to opazovanja vseh teleskopov na Zemlji. S temi podatki nato skušate odgovoriti na svoje znanstveno vprašanje. Seveda pa morate najprej te podatke poiskati, jih razumeti in jih prikazati na različne načine. Torej je bilo in je še vedno precej dela, da so vsa ta opazovanja prosto in v uporabni obliki na voljo vsem astronomom po svetu. Nekatera orodja so seveda zelo preprosta. Vsak si recimo lahko izriše neko galaksijo ali izbrani del neba. Zdaj smo po vsem svetu vzpostavili spletne strani in načine za iskanje podatkov o vseh mogočih vrstah objektov in v različnih vrstah svetlobe. Izraz virtualni tu torej ne pomeni, da tak observatorij ne bi bil uporaben za resno znanstveno delo, ampak le, da imate možnost uporabljati podatke prejšnjih opazovanj po svetu, ki smo jih združili v enotno urejeni in prosto dostopni arhiv podatkov.

Virtualni observatorij torej vsakomur omogoča brskanje po nebu. Prof. Padovani, imate morda idejo, kaj bi lahko poslušalci Frekvence X opazili iz udobja dnevne sobe? Bi lahko morda preverili, ali so v središčih številnih galaksij velike črne luknje?

Načelno je odgovor da, v praksi pa morate vedeti, kam gledati in kateri podatki so pravi za vaš namen. Lahko bi se recimo osredotočili na kakšno bližnjo galaksijo in skušali odkriti, ali se sij svetlobe, ki prihaja iz središča galaksije, sčasoma spreminja. Hitro prižiganje in ugašanje vam namreč pove, da je svetilo majhno, manjše od velikosti, ki jo svetloba prepotuje v tako kratkem času. In če svetilo seva tudi veliko energije, je edina razlaga, da opazujete majhno in svetlo območje v okolici črne luknje. Če povzameva, to se načelno da narediti, vendar potrebujete kar nekaj dodatnih informacij, ki jih seveda tudi lahko najdete na spletu: za začetek je to že seznam obetavnih tarč.

Pri tem je vsekakor vznemirljivo, da lahko vsaj v določenih delih pri znanstvenih projektih sodelujejo tudi ljubiteljski astronomi.

Verjetno poznate pobude, ki skušajo približati znanost državljanom. Tako so kolegi, ki se ukvarjajo z digitalnim pregledom neba Sloan, želeli določiti, kakšne vrste so več milijonov opazovanih galaksij, ki so lahko eliptičnih ali spiralnih oblik. Postavili so spletno stran z vsemi temi posnetki in potem je dobesedno več milijonov ljudi te slike pregledovalo in po navodilih razvrščalo galaksije po obliki. Ti rezultati so bili znanstveno uporabni in tudi objavljeni. Torej tudi ljudje brez formalne izobrazbe zares lahko pomagajo pri znanstvenih raziskavah.

Znanost je pogosto mešanica pričakovanega in nepričakovanega. Nedavno presenečenje je bilo odkritje delcev, poimenovanih nevtrini, ki imajo zelo veliko energijo in so jih astronomi opazili z detektorjem Ledena kocka, ki je postavljen na južnem polu na Antarktiki. Nedavno je vaša ekipa objavila dokaze, da nekateri od teh težko opazljivih nevtrinskih delcev verjetno prihajajo iz aktivnih središč galaksij ekstremnih lastnosti?

To je zelo vznemirljiva zgodba. Nevtrini so zelo neobičajni delci. So tako majhni, da ne vemo natančno niti, kolikšna je njihova masa. So sicer veliko masivnejši kot elektroni, ki so zares lahki delci. Vendar nevtrini v primerjavi z elektroni zelo šibko integrirajo s preostalo snovjo. Torej jih lahko opazite le, če jim na pot nastavite zelo veliko tarčo. Na Antarktiki so tako zgradili Ledeno kocko. Po večletnem delu jim je v antarktični led uspelo zvrtati veliko mrežo tri kilometre globokih lukenj, v katere so vstavili detektorje svetlobe. Če nevtrino iz vesolja globoko v ledu zadene proton, sproščena energija po kaskadi dogodkov rodi blisk svetlobe, ki ga zaznajo detektorji, zakopani v temi globokega antarktičnega ledu. Znanstveniki, ki delajo z Ledeno kocko, so zaznali kakšnih sto nevtrinov, za katere so prepričani, da so prišli iz vesolja. Žal pa meritev smeri prihoda ni bila dovolj točna, da bi lahko posamezni nevtrino povezali z določenim objektom na nebu. S kolegi sem našel preprosto idejo iz zagate. Ker imajo ti nevtrini zelo veliko energijo, smo njihovo razporeditev primerjali s svetlobo gamažarkov, to je s svetlobo najvišjih energij. Izkazalo se je, da vsaj nekatere od nevtrinov lahko povežemo z izjemno energetsko vrsto aktivnih galaktičnih jeder, ki jim pravimo blazarji. Ti blazarji imajo curke snovi, ki so usmerjeni skoraj natančno v smeri proti Zemlji. S podrobno statistično analizo smo z veliko stopnjo verjetnosti pokazali, da vsaj nekateri od teh nevtrinov zares prihajajo iz teh blazarjev. To odkritje je pomembno za fiziko visokih energij, tudi za fiziko delcev. Odkritje sicer še ni povsem potrjeno, vendar Ledena kocka na južnem tečaju še naprej opazuje nevtrine in bomo tako lahko v prihodnosti z dodatnimi rezultati meritev preverili, ali je naša razlaga o izvoru teh nevtrinov pravilna.

Odkritje je lahko zelo pomembno tudi za druga področja fizike, pripoveduje prof. Paolo Padovani

Najpomembnejše je verjetno vprašanje kozmičnih žarkov. Kljub zavajajočemu imenu so kozmični žarki v resnici delci, ki prihajajo iz vesolja. Njihov obstoj so pred približno sto leti odkrili v Nemčiji. Med njimi so tudi najbolj energetski delci, ki sploh obstajajo. Energija takega delca je lahko neznansko večja od energije nevtrinov, ki jih opazujemo z Ledeno kocko. Zopet pa imamo isto zagato: nihče ne ve, od kod izvirajo ti superenergetski delci. Možna domneva bi bila, da če so blazarji izvor nevtrinov visokih energij, so morda odgovorni tudi za te ekstremne kozmične žarke. Če se ta domneva izkaže za resnično, bi bilo to pomembno za razumevanje delcev izjemno visokih energij iz vesolja.

To bi vsekakor pomenilo tudi boljše razumevanje vesolja!

V bistvu bi potem lahko trdili, da so ti blazarji izjemni pospeševalniki delcev, ki so veliko zmogljivejši od vsega, kar lahko naredimo na Zemlji, recimo v Cernu z Velikim hadronskim pospeševalnikom. Obstoj takih naravnih pospeševalnikov bi veliko povedal tudi o fizikalnih pogojih v neposredni okolici črnih lukenj, ki jih najdemo v središčih teh blazarjev.

Evropski južni observatorij zdaj gradi evropski Ekstremno veliki teleskop, o katerem smo na Valu 202 že večkrat govorili. Ko bo čez sedem let ta teleskop začel delovati, bo to daleč največji teleskop za opazovanja v vidni ali infrardeči svetlobi, ki je bil kdaj zgrajen. Prof. Padovani je seveda najboljši naslov, da nam razloži, kako bo ta naprava pomagala pri raziskavah aktivnih galaktičnih jeder, morda pa tudi pri virtualnem observatoriju, ki ga lahko izkusimo vsi Zemljani.

Nekateri izkušnjo primerjajo s tem, kar je videl Galilei, ko je daljnogled kot prvi obrnil proti nebu. Ta teleskop bo tako velik, da bomo kot prvo lahko videli veliko temnejše izvore, kot je to mogoče zdaj. Pri aktivnih galaksijah bomo recimo videli izvore, ki so zdaj veliko pretemni za kateri koli teleskop. Verjetno pa bo najbolj zanimivo opazovati okolico črnih lukenj, saj so te motor, ki poganja aktivne galaksije. Ko bomo s tem teleskopom opazovali središče naše Galaksije, pri čemer vemo, da je črna luknja z maso, ki je enaka 4,3 milijona naših Sonc, bomo lahko opazovali njeno neposredno okolico, ki nam je zdaj nedosegljiva. Opazovanje zvezd, ki se na tako majhni razdalji od masivne črne luknje lahko gibljejo celo z desetino hitrosti svetlobe, bo tako mogoče v naši in tudi v drugih galaksijah. Z evropskim Ekstremno velikim teleskopom bomo torej lahko opazovali veliko več črnih lukenj in tako razumeli, kako so nastale in kakšen vpliv imajo na svoje galaksije gostiteljice. Vendar pa bi pri tem teleskopu rad povedal tole: seveda imamo ideje, kaj bomo lahko naredili s tem teleskopom. Vendar pa so najpomembnejša odkritja vedno presenečenje. Da je to tako, vemo iz zgodovinskih izkušenj. Ko smo recimo pred desetletji zgradili Hubblov vesoljski teleskop, so ljudje pričakovali pomembne rezultate, recimo meritev vrednosti Hubblove konstante, ki meri hitrost širjenja in starost vesolja. Vendar večine najpomembnejših odkritij nihče ni pričakoval. Torej v znanosti vedno upamo na neplanirana odkritja. In zato je astronomija res zanimiva in vznemirljiva.


Frekvenca X

682 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Vznemirljivost astronomije in junijskega neba

01.06.2017

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

Te dni se lepo vidijo Jupitrove lune in Saturn, opaziti bo mogoče tudi mednarodno vesoljsko postajo in iridijev blisk

Evropski južni observatorij v Čilu gradi velik teleskop. Ko bo ta čez sedem let začel delovati, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa, in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.

“Ob junijskih večerih priporočam ogled Jupitrovih lun, okoli polnoči je mogoče opaziti Saturn. V četrtek ob 23.03 bo šla prek neba mednarodna vesoljska postaja. Videti jo bo mogoče 5 minut. Za ljubiteljske astronome priporočam obisk spletne strani www.heavens-above.com

Prof. Tomaž Zwitter

Kako se preleviti v Galilea Galileija

Paolo Padovani je italijanski astronom, ki dela na Evropskem južnem observatoriju v Garchingu v Nemčiji. Zanimajo ga aktivna galaktična jedra, to so galaksije, ki imajo v svojem središču aktivno črno luknjo. Take objekte opazujemo z različnimi vrstami svetlobe: od radijske do infrardeče, ultravijolične ter rentgenskih in gamažarkov. Prof. Padovani sodeluje tudi pri izdelavi evropskega Ekstremno velikega teleskopa, ki ga Evropski južni observatorij gradi v Čilu in bo z zrcalom s premerom 39 metrov največji teleskop na svetu za opazovanja v vidni in infrardeči svetlobi. Prof. Padovani je skupaj s kolegi odkril 30 velikih črnih lukenj zunaj mlečne ceste in velja za enega najbolj cenjenih evropskih astronomov.

Prof. Padovani zadnjih deset let na Evropskem južnem observatoriju vodi Virtualni observatorij, zato smo ga v pogovoru posebej za Frekvenco X zaprosili, naj nam razloži specifiko virtualnega observatorija.  

Namesto da bi za neko opazovanje uporabili običajni teleskop, pri virtualnem observatoriju zložite skupaj podatke prejšnjih opazovanj, v idealnem primeru so to opazovanja vseh teleskopov na Zemlji. S temi podatki nato skušate odgovoriti na svoje znanstveno vprašanje. Seveda pa morate najprej te podatke poiskati, jih razumeti in jih prikazati na različne načine. Torej je bilo in je še vedno precej dela, da so vsa ta opazovanja prosto in v uporabni obliki na voljo vsem astronomom po svetu. Nekatera orodja so seveda zelo preprosta. Vsak si recimo lahko izriše neko galaksijo ali izbrani del neba. Zdaj smo po vsem svetu vzpostavili spletne strani in načine za iskanje podatkov o vseh mogočih vrstah objektov in v različnih vrstah svetlobe. Izraz virtualni tu torej ne pomeni, da tak observatorij ne bi bil uporaben za resno znanstveno delo, ampak le, da imate možnost uporabljati podatke prejšnjih opazovanj po svetu, ki smo jih združili v enotno urejeni in prosto dostopni arhiv podatkov.

Virtualni observatorij torej vsakomur omogoča brskanje po nebu. Prof. Padovani, imate morda idejo, kaj bi lahko poslušalci Frekvence X opazili iz udobja dnevne sobe? Bi lahko morda preverili, ali so v središčih številnih galaksij velike črne luknje?

Načelno je odgovor da, v praksi pa morate vedeti, kam gledati in kateri podatki so pravi za vaš namen. Lahko bi se recimo osredotočili na kakšno bližnjo galaksijo in skušali odkriti, ali se sij svetlobe, ki prihaja iz središča galaksije, sčasoma spreminja. Hitro prižiganje in ugašanje vam namreč pove, da je svetilo majhno, manjše od velikosti, ki jo svetloba prepotuje v tako kratkem času. In če svetilo seva tudi veliko energije, je edina razlaga, da opazujete majhno in svetlo območje v okolici črne luknje. Če povzameva, to se načelno da narediti, vendar potrebujete kar nekaj dodatnih informacij, ki jih seveda tudi lahko najdete na spletu: za začetek je to že seznam obetavnih tarč.

Pri tem je vsekakor vznemirljivo, da lahko vsaj v določenih delih pri znanstvenih projektih sodelujejo tudi ljubiteljski astronomi.

Verjetno poznate pobude, ki skušajo približati znanost državljanom. Tako so kolegi, ki se ukvarjajo z digitalnim pregledom neba Sloan, želeli določiti, kakšne vrste so več milijonov opazovanih galaksij, ki so lahko eliptičnih ali spiralnih oblik. Postavili so spletno stran z vsemi temi posnetki in potem je dobesedno več milijonov ljudi te slike pregledovalo in po navodilih razvrščalo galaksije po obliki. Ti rezultati so bili znanstveno uporabni in tudi objavljeni. Torej tudi ljudje brez formalne izobrazbe zares lahko pomagajo pri znanstvenih raziskavah.

Znanost je pogosto mešanica pričakovanega in nepričakovanega. Nedavno presenečenje je bilo odkritje delcev, poimenovanih nevtrini, ki imajo zelo veliko energijo in so jih astronomi opazili z detektorjem Ledena kocka, ki je postavljen na južnem polu na Antarktiki. Nedavno je vaša ekipa objavila dokaze, da nekateri od teh težko opazljivih nevtrinskih delcev verjetno prihajajo iz aktivnih središč galaksij ekstremnih lastnosti?

To je zelo vznemirljiva zgodba. Nevtrini so zelo neobičajni delci. So tako majhni, da ne vemo natančno niti, kolikšna je njihova masa. So sicer veliko masivnejši kot elektroni, ki so zares lahki delci. Vendar nevtrini v primerjavi z elektroni zelo šibko integrirajo s preostalo snovjo. Torej jih lahko opazite le, če jim na pot nastavite zelo veliko tarčo. Na Antarktiki so tako zgradili Ledeno kocko. Po večletnem delu jim je v antarktični led uspelo zvrtati veliko mrežo tri kilometre globokih lukenj, v katere so vstavili detektorje svetlobe. Če nevtrino iz vesolja globoko v ledu zadene proton, sproščena energija po kaskadi dogodkov rodi blisk svetlobe, ki ga zaznajo detektorji, zakopani v temi globokega antarktičnega ledu. Znanstveniki, ki delajo z Ledeno kocko, so zaznali kakšnih sto nevtrinov, za katere so prepričani, da so prišli iz vesolja. Žal pa meritev smeri prihoda ni bila dovolj točna, da bi lahko posamezni nevtrino povezali z določenim objektom na nebu. S kolegi sem našel preprosto idejo iz zagate. Ker imajo ti nevtrini zelo veliko energijo, smo njihovo razporeditev primerjali s svetlobo gamažarkov, to je s svetlobo najvišjih energij. Izkazalo se je, da vsaj nekatere od nevtrinov lahko povežemo z izjemno energetsko vrsto aktivnih galaktičnih jeder, ki jim pravimo blazarji. Ti blazarji imajo curke snovi, ki so usmerjeni skoraj natančno v smeri proti Zemlji. S podrobno statistično analizo smo z veliko stopnjo verjetnosti pokazali, da vsaj nekateri od teh nevtrinov zares prihajajo iz teh blazarjev. To odkritje je pomembno za fiziko visokih energij, tudi za fiziko delcev. Odkritje sicer še ni povsem potrjeno, vendar Ledena kocka na južnem tečaju še naprej opazuje nevtrine in bomo tako lahko v prihodnosti z dodatnimi rezultati meritev preverili, ali je naša razlaga o izvoru teh nevtrinov pravilna.

Odkritje je lahko zelo pomembno tudi za druga področja fizike, pripoveduje prof. Paolo Padovani

Najpomembnejše je verjetno vprašanje kozmičnih žarkov. Kljub zavajajočemu imenu so kozmični žarki v resnici delci, ki prihajajo iz vesolja. Njihov obstoj so pred približno sto leti odkrili v Nemčiji. Med njimi so tudi najbolj energetski delci, ki sploh obstajajo. Energija takega delca je lahko neznansko večja od energije nevtrinov, ki jih opazujemo z Ledeno kocko. Zopet pa imamo isto zagato: nihče ne ve, od kod izvirajo ti superenergetski delci. Možna domneva bi bila, da če so blazarji izvor nevtrinov visokih energij, so morda odgovorni tudi za te ekstremne kozmične žarke. Če se ta domneva izkaže za resnično, bi bilo to pomembno za razumevanje delcev izjemno visokih energij iz vesolja.

To bi vsekakor pomenilo tudi boljše razumevanje vesolja!

V bistvu bi potem lahko trdili, da so ti blazarji izjemni pospeševalniki delcev, ki so veliko zmogljivejši od vsega, kar lahko naredimo na Zemlji, recimo v Cernu z Velikim hadronskim pospeševalnikom. Obstoj takih naravnih pospeševalnikov bi veliko povedal tudi o fizikalnih pogojih v neposredni okolici črnih lukenj, ki jih najdemo v središčih teh blazarjev.

Evropski južni observatorij zdaj gradi evropski Ekstremno veliki teleskop, o katerem smo na Valu 202 že večkrat govorili. Ko bo čez sedem let ta teleskop začel delovati, bo to daleč največji teleskop za opazovanja v vidni ali infrardeči svetlobi, ki je bil kdaj zgrajen. Prof. Padovani je seveda najboljši naslov, da nam razloži, kako bo ta naprava pomagala pri raziskavah aktivnih galaktičnih jeder, morda pa tudi pri virtualnem observatoriju, ki ga lahko izkusimo vsi Zemljani.

Nekateri izkušnjo primerjajo s tem, kar je videl Galilei, ko je daljnogled kot prvi obrnil proti nebu. Ta teleskop bo tako velik, da bomo kot prvo lahko videli veliko temnejše izvore, kot je to mogoče zdaj. Pri aktivnih galaksijah bomo recimo videli izvore, ki so zdaj veliko pretemni za kateri koli teleskop. Verjetno pa bo najbolj zanimivo opazovati okolico črnih lukenj, saj so te motor, ki poganja aktivne galaksije. Ko bomo s tem teleskopom opazovali središče naše Galaksije, pri čemer vemo, da je črna luknja z maso, ki je enaka 4,3 milijona naših Sonc, bomo lahko opazovali njeno neposredno okolico, ki nam je zdaj nedosegljiva. Opazovanje zvezd, ki se na tako majhni razdalji od masivne črne luknje lahko gibljejo celo z desetino hitrosti svetlobe, bo tako mogoče v naši in tudi v drugih galaksijah. Z evropskim Ekstremno velikim teleskopom bomo torej lahko opazovali veliko več črnih lukenj in tako razumeli, kako so nastale in kakšen vpliv imajo na svoje galaksije gostiteljice. Vendar pa bi pri tem teleskopu rad povedal tole: seveda imamo ideje, kaj bomo lahko naredili s tem teleskopom. Vendar pa so najpomembnejša odkritja vedno presenečenje. Da je to tako, vemo iz zgodovinskih izkušenj. Ko smo recimo pred desetletji zgradili Hubblov vesoljski teleskop, so ljudje pričakovali pomembne rezultate, recimo meritev vrednosti Hubblove konstante, ki meri hitrost širjenja in starost vesolja. Vendar večine najpomembnejših odkritij nihče ni pričakoval. Torej v znanosti vedno upamo na neplanirana odkritja. In zato je astronomija res zanimiva in vznemirljiva.


17.11.2022

Proteini, gradniki življenja 2/3: 5800 proteinskih kompleksov za premer človeškega lasu

Proteini so gradniki našega življenja, zaradi njih lahko dihamo, mislimo, hodimo … V prvi epizodi serije smo odkrivali, zakaj je sploh pomembno, da poznamo njihovo tridimenzionalno obliko. S tem znanjem lahko namreč bolje razumemo procese življenja, imamo vpogled v številne bolezni, hkrati pa je to podlaga za načrtovanje novih zdravil. V drugi epizodi tridelne serije Proteini, gradniki življenja se spoznamo z načinom za določanje tridimenzionalne oblike molekul - s krioelektronsko mikroskopijo. Obiščemo tudi laboratorij na Kemijskem inštitutu, kjer stoji edini tak mikroskop v Sloveniji in pokličemo Nobelovega nagrajenca Joachima Franka, ki je leta 2017 prejel tretjino nagrade za razvoj na področju krioelektronske mikroskopije. Pa še to: na Akademiji za likovno umetnost in oblikovanje so nam natisnili model 3D-proteina, več o njegovi obliki pove prof. Metod Frlic, predstojnik oddelka za kiparstvo.


09.11.2022

Proteini, gradniki življenja 1/3: Krasne tridimenzionalne oblike

Nova miniserija Frekvence X se bo tokrat podala v skrivnostni svet proteinov. Čeprav to zveni enostavno, bomo v prihodnjih epizodah naše znanstvene oddaje poskušali zaplavati v nekoliko bolj zahtevne vode preučevanja proteinov. Pa ne tistih, ki jih uživamo, temveč takšnih, lahko jim rečemo kar molekularni stroji, ki nam omogočajo življenje. Tistih, ki so že v našem telesu. Če poenostavimo, so proteini nekakšni mali delavci, precej manjši od celic. So encimi, ki omogočajo kemijske reakcije, recimo prebavo hrane. Hemoglobin v rdečih krvnih celicah prenaša kisik po telesu. Proteini so gradniki našega življenja. V prvi epizodi se tako spoznavamo z njihovo tridimenzionalno obliko in s tem, zakaj je poznavanje te oblike pomembno v znanosti, sploh na področju poznavanja bolezni in načrtovanja novih zdravil. Sprehodimo se skozi nobelovce, ki so gradili to piramido znanja o proteinih, in ugotavljamo, kakšni so začetki napovedovanja oblik proteinov ob pomoči računalnikov.


05.11.2022

Proteini, gradniki življenja - napovednik serije

Stroju je uspelo tisto, česar človek ni zmogel. S pomočjo umetne inteligence AlphaFold2 so pred dvema letoma napovedali tridimenzionalno obliko 200 milijonov proteinov. Prej smo jih poznali približno 170 tisoč. V novi seriji Frekvence X se bomo spraševali, zakaj sploh je pomembno poznati oblike proteinov, kaj znanstvenikom ena oblika proteina pove o njegovih lastnostih, kaj sploh so proteini? Zanimali nas bodo tisti molekularni stroji, ki nam omogočajo, da živimo. Proteini v našem telesu. Pridružite se nam naslednje tri četrtke, naročite se na podkast, da česa ne zamudite.


03.11.2022

David Wengrow o svobodi snovanja novih družbenih ureditev

"Skrajni čas je, da se vprašamo, ali nam je všeč trenutna družbena ureditev." Pravi soavtor uspešnice Pričetek vsega: Nova zgodovina človeštva.


27.10.2022

Oktober v znanosti: O mrku, kugi in avtoimunih boleznih ter znanstveni poeziji

So imeli neandertalci družinsko življenje, kako je strašna kuga vplivala na sodobne avtoimune bolezni pri ljudeh in ali je res, da nekoč popolnih sončnih mrkov na Zemlji sploh ni bilo mogoče videti? V Frekvenci X smo se poglobili v oktobrske znanstvene objave in spremljamo sveže novice v znanosti. Vrsto zanimivosti v povezavi z vesoljem bo komentirala astrofizičarka dr. Dunja Fabjan, gostujoča urednica pa bo profesorica farmacije Nataša Karas Kuželički, ki na Facebooku objavlja na forumu Science Mamas'. Ravno pravi odmerek aktualnega v znanosti pa začinimo še s poezijo!


20.10.2022

Heino Falcke: Črne luknje kot poslednji horizont znanosti

Morda se spomnite, aprila 2019 smo si lahko črno luknjo prvič ogledali na fotografiji. Podoba črnega kroga z ognjenim obročem je tedaj osupnila znanstvenike in laike. Raziskovalci so leta delali na tem, da so povezovali desetine teleskopov po svetu in naposled z njihovo pomočjo ustvarili podobo še nikoli videnega. Eden od pobudnikov projekta Event Horizon Telescope in takratni predsednik znanstvenega sveta pri njem Nemec Heino Falcke je minuli teden obiskal Slovenijo, saj so mu na Univerzi v Novi Gorici podelili častni doktorat. Za tokratno Frekvenco X smo se z njim pogovarjali o tem, zakaj so črne luknje takšno astronomsko čudo, ali nam bo kdaj uspelo pogledati v njihovo notranjost in ali je v znanosti tudi kaj prostora za vero.


13.10.2022

Ne čakajmo na čudežno tehnologijo, ki bo rešila okoljsko krizo

V Frekvenci X obračamo pogled proti tehnologijam, s katerimi naj bi izvedli zeleni prehod in razogljičenje družb. Veliko govorimo o zelenem prehodu, trajnostni družbi in ogljični nevtralnosti. Poenostavljeno si predstavljamo, da bi morali le odpraviti presežne izpuste CO2 in energijo pridobivati brez njih. A kaj vse to v resnici zahteva? Smo res na poti proti čudežni tehnološki rešitvi, ki bo odpravila okoljsko krizo?


06.10.2022

Nobelove nagrade 2022

Prvi teden v oktobru je tradicionalno v znamenju Nobelovih nagrad. V ponedeljek so v Stockholmu razglasili nagrajence za medicino, v torek za fiziko in včeraj za kemijo. Podrobno predstavimo letošnje nagrade in nagrajence. Danes bodo razglasili še Nobelovo nagrado za književnost, v petek nagrado za mir, prihodnji ponedeljek pa še za ekonomijo. Podelitve bodo 10. decembra v Stockholmu. V živo v studiu dosežke analiziramo skupaj s slovenskimi znanstveniki.


29.09.2022

150 radiovednih oddaj smo proslavili z radiovednim multiizivom

Kdo neki so radiovedni? So to ljudje, ki so preveč radovedni, morda tisti, ki se spoznajo na radie, ali pa taki, ki vse odgovore poiščejo na radiu? Vse to. Radiovedni so doslej zagrizli v že več kot 150 izzivov, ki so jih poslali poslušalci, in tudi v novo sezono stopajo razposajeni, polni navdušenja in idej. V celotni ekipni zasedbi vas pozdravijo v terminu starejše raziskovalne sestre Frekvence X v živo s studia in terena. Rabutali bodo nove poslušalske izzive, eksperimentirali s plini, sledili štorkljam, poslušali šum školjk in delili nagrade.


22.09.2022

Mariša Gasparini, Kraljevi kolidž v Londonu: "Kardiologija je interdisciplinarna veda"

2188 članov v 51 državah sveta. Slovenci, ki so se izobrazili tudi v tujini. Kakšen je vtis o študiju čez mejo? Zakaj študirati na tujih univerzah? Je ključno vprašanje: ostati v tujini ali se vrniti domov? V treh septembrskih Frekvencah X gostimo tri člane oziroma članice društva Vtis, društva v tujini izobraženih Slovencev. V tretji epizodi predstavljamo Marišo Gasparini, ki se je po magisteriju iz farmacije v Sloveniji odločila še za študij medicine na Kraljevem kolidžu v Londonu. Skoraj naključno je bila prisotna pri izdelavi tridimenzionalnih modelov src, kar jo je spodbudilo k specializaciji na otroški kardiologiji, s posebnim zanimanjem za kardiomiopatijo pri otrocih. Trenutno je specializantka na pediatričnem oddelku univerzitetne bolnišnice Lewisham v Londonu.


15.09.2022

Ajda Lotrič, Univerza Aalto na Finskem: "Na svetu še ni ladje, ki bi plula samo na vodik"

2188 članov v 51 državah sveta. Slovenci, ki so se izobrazili tudi v tujini. Kakšen je vtis o študiju čez mejo? Zakaj študirati na tujih univerzah? Je ključno vprašanje ostati v tujini ali se vrniti domov? V treh septembrskih Frekvencah X gostimo tri člane oziroma članice društva Vtis, društva v tujini izobraženih Slovencev. Tako v drugi epizodi spoznamo Ajdo Lotrič, podiplomsko študentko ladijske arhitekture in arktične tehnologije na Univerzi Aalto na Finskem. Na sever jo je peljala ljubezen do mrazu in Arktike, ladijsko inženirstvo pa je začela študirati, ker jo je zanj navdušil dedek.


08.09.2022

Eva Turk, Univerza Jugovzhodne Norveške: "Opolnomočenje pacientov je ključno v javnem zdravstvu"

2188 članov v 51 državah sveta. Slovenci, ki so se izobrazili tudi v tujini. Kakšen je vtis o študiju čez mejo? Zakaj študirati na tujih univerzah? Je ključno vprašanje ostati v tujini ali se vrniti domov? V treh septembrskih Frekvencah X gostimo tri člane oziroma članice društva Vtis, društva v tujini izobraženih Slovencev. V prvi epizodi je z nami Eva Turk, ki je vse študijsko obdobje preživela v tujini, skoraj 25 let, zadnjih 5 let deluje kot izredna profesorica na Univerzi Jugovzhodne Norveške in raziskovalka na Univerzi v Oslu. Osredotočena je na polje javnega zdravstvenega sistema, opolnomočenja pacientov in vpeljevanje digitalizacije v polje zdravstva.


01.09.2022

Kako naše najmlajše navdušiti za znanost?

Frekvenca X tokrat pogleduje k najmlajšim, ki prav danes začenjajo novo šolsko leto. Marsikdo reče, da šola ubije radovednost, nas pa zanima ravno nasprotno: kako pri mladih danes spodbujati radovednost in veselje do znanosti? Podali smo se med knjige, v muzej, celo na predstavo … in izvedeli marsikaj zanimivega.


20.07.2022

200 let od rojstva 'očeta genetike' Gregorja Mendla

20. julija mineva natanko 200 let od rojstva češkega meniha Gregorja Mendla, ki slovi kot oče genetike. Obletnica rojstva tega učenjaka, ki se je v zgodovino vpisal s križanjem graha, je lahko priložnost za to, da se na kratko ozremo na pot, ki jo je v teh dveh stoletjih prehodila genetika, in preletimo temeljne izzive, pred katerimi je danes. Maja Ratej se je o tem pogovarjala z genetikom dr. Alešem Mavrom s Kliničnega inštituta za medicinsko genetiko UKC Ljubljana. Začela sta s komentarjem dela Gregorja Mendla. Kaj je bil ta njegov revolucionarni uvid, zaradi katerega mu pravimo oče genetike?


07.07.2022

Frank Close o izjemnem popotovanju do odkritja Higgsovega bozona

Pred natanko desetletjem so iz raziskovalnega središča CERN v bližini Ženeve sporočili, da so se dokopali do enega največjih prebojev v fiziki sodobnega časa. Odkriti Higgsov bozon je bil edini še manjkajoči košček standardnega modela fizike osnovnih delcev. Veliki hadronski trkalnik, gigantska naprava dolžine ljubljanske obvoznice, je po skoraj štirih letih delovanja upravičil pričakovanja in potrdil, kar so fiziki predvidevali skoraj pet desetletij.


23.06.2022

Babilonski stolp vsega živega

Danes je 23. junij, na ta dan je v koledarju kresna noč in po ljudskem verovanju naj bi bilo prav tedaj mogoče razumeti govorico živali, ob pogoju, da ti v čevelj pade praprotno seme. A da bi slišali živalsko govorico, ne potrebujemo ne kresne noči ne praprotnega semena, ampak le malo znanosti in domišljije. V svetu okoli nas je pravi vrvež – na vseh mogočih zvočnih frekvencah, v elektromagnetnih silnicah, barvnih spektrih, vibracijskih ritmih, kemičnih pošiljkah … Ste za to, da splezamo na babilonski stolp vsega živega? To epizodo sta pripravila Maja Ratej in strokovni sodelavec dr. Matjaž Gregorič. Sogovorniki: - Urša Fležar, Biotehniška fakulteta - Gordana Glavan, Biotehniška fakulteta - Ines Mandič Mulec, Biotehniška fakulteta - Jernej Polajnar, Nacionalni inštitut za biologijo - Barbara Zakšek, Center za kartografijo flore in favne - biologinja in operna pevka Petra Vrh Vrezec


08.06.2022

Ključni znanstveni preboji v zadnjih 50 letih

Vesolje, telekomunikacije, genetika, medicina, podnebna znanost. Kateri so največji preboji, ki so zaznamovali ta znanstvena področja? Analiziramo največje mejnike na področju znanosti v zadnjih 50 letih.


03.06.2022

2022: V časovno kapsulo bi dali umazano prst, ledeniško vrtino, semena in vodo

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


02.06.2022

Carlo Rovelli: Čas kot tak v resnici ne obstaja

Fizik svetovnega slovesa Carlo Rovelli o fiziki in filozofiji časa: "Čas kot tak v resnici ne obstaja. Čas je prostor, ki ga odpirata naš spomin in pričakovanje".


02.06.2022

Pogovor na OŠ Brinje

Frekvenca X se je v času praznovanja 50-letnice Vala 202 podala tudi med šolarje in kot vreče zlata med njimi delila šolske, profesorske, življenjske in raziskovalne izkušnje naših strokovnjakov. Prijetno, sicer hladno jutro je namreč na OŠ Brinje v Grosupljem zaznamoval pogovor z imenitnimi gosti, ki so se z veseljem pomešali med mladino. Dr. Alojz Kodre, dr. Matevž Dular in dr. Anja Petković Komel so osnovnošolcem prinesli in tudi prenesli svojo strast do raziskovanja, do eksperimentiranja in tudi reševanja ugank.


Stran 5 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov