Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Temna snov - prof. dr. Maruša Bradač

08.12.2011


Danes vemo, da je večina snovi v vesolju tako imenovana temna snov, raziskovanje njenih lastnosti pa je ena osrednjih tem vesoljskih raziskav.

Astronomi so za določanje lokacije temne snovi v jati uporabili pojav, ki se imenuje gravitacijsko lečenje. Ko svetlobni žarki potujejo skozi gravitacijsko polje v jati, se ukrivijo, pri čemer se podoba galaksije popači. Prav ta popačenja s precejšnjo verjetnostjo odkrivajo, kje je temna snov razporejena.

Pomagajmo si s prispodobo: predstavljamo si, da naročimo kapučino. Vidimo, da nam natakar ni prinesel prazne skodelice, po obnašanju pene lahko sklepamo na količino in nekatere lastnosti nevidne kave pod njo.

Vseeno pa bomo kavo videli šele, če bomo odpili peno, nato bomo spoznali tudi njen okus. Kot je večina kapučina kava, je tudi večina snovi v vesolju temne. V zadnjih letih smo v raziskavah in razumevanju temne snovi v primerjavi s kapučinom prišli do srebanja pene.

Mnoga vprašanja o vesolju ostajajo torej odprta in eno teh je prav gotovo sestava temne snovi. Pri tem je bil bistven prispevek naše gostje dr. Maruše Bradač.

V preteklosti nedvoumno pokazala, da temna snov za razliko od običajne snovi čuti le gravitacijski privlak. Ugotovila je, da se ob trku skupin galaksij njihova temna snov loči od običajne snovi, ki je izpostavljena tudi negravitacijskim silam. Ti rezultati zbujajo upanje, da bomo naravo temne snovi kmalu bolje razumeli.

Dr. Maruša Bradač, prve domneve o obstoju temne snovi so stare že 78 let. Lahko razložite, kaj je Fritza Zwickyja in Vero Rubin pripeljalo do tako nenavadnega sklepa?

Torej oba Fritz Zwicky in Vera Rubin sta merila hitrosti zvezd in galaksij v samih galaksijah in jatah galaksij in ko sta izmerila te hitrosti, sta ugotovila , da so hitrosti prevelike za to, kar smo vedeli takrat o galaksijah in jatah galaksij. Predstavljajte si to mogoče kot zračnico. Če je v zračnici prevelik tlak, bo zračnica počila – in prav tako seveda v vesolju nimamo zračnic – ampak če se galaksije gibljejo prehitro, potem jih ta težnostni privlak ne more obdržati skupaj in se v bistvu začnejo gibati, ne ostanejo skupaj kot enota in prav zaradi tega sta oba ugotovila, da tako v galaksijah kot v jatah galaksij obstaja snov, ki oboje drži skupaj in prav to snov sta poimenovala temna snov.

Nova opazovanja prvotne domneve potrjujejo, seveda pa so zmožnosti današnjih teleskopov bistveno večje kot nekoč in raziskovanje lastnosti temne snovi je ena osrednjih tem današnjih raziskav vesolja. Se s tem odpirajo tudi bolj vznemirljive možnosti?

Seveda, novi  teleskopi in pospeševalniki prinašajo nove možnosti, te možnosti so trenutno Fermijev teleskop, ki meri, kako temna snov interagira sama s sabo in pa seveda veliki Hadronski pospeševalnik, ki nam bo, upajmo, pomagal izmeriti maso delcev temne snovi.

Trki jat galaksij, ki nam razkrijejo obstoj in lastnosti temne snovi, pomenijo, da je na kupu zelo veliko običajne in temne snovi. Zato so oddaljeni objekti, ki so za jato galaksij, videti popačeni. Je tak pojav gravitacijskega lečenja mogoče preprosto razumeti? Kaj novega se lahko pri tem naučimo?

Že ime pove, lečenje, ta pojav lahko razumemo z navadnim pojavom optike, ki smo ga vsi vajeni, torej navadne leče, samo tukaj je razlika, ker so leče, ki jih imamo, ki jih uporabljamo v vsakdanjem življenju, narejene tako, da slike ne popačijo. V bistvu mi ne želimo, da bi se slika popačila, mi samo želimo videti večje ali bolj ostro. V primeru gravitacijskega lečenja pa pride do popačenja in ta pojav je mogoče razumeti morda z malce drugačno lečo. Če vzamete kozarec vina in pogledate na primer svečo, ne skozi kozarec, ampak skozi podstavek kozarca, boste videli prav te popačitve, ki jih mi opazujemo v jatah galaksij. Pri tem se lahko ogromno naučimo, naučimo se, kako je snov razporejena v jatah galaksij in pa seveda tudi, kako interagira sama s seboj in tudi z navadno snovjo.

Narave temne snovi še ne poznamo, vseeno pa nova opazovanja njene lastnosti vedno bolj opredeljujejo. Je ta snov razporejena gladko ali grudasto, lahko o njej povemo že kaj konkretnega?

Torej snov je razporejena večinoma gladko, ampak ne tako gladko, kot je to na primer pri temni energiji. Še vedno je snov razporejena okoli galaksij, okoli jat galaksij. Kaj lahko povemo še bolj konkretnega? Verjetno je trenutno najbolj zanimivo, da lahko zmerimo lastnosti te temne snovi in kako interagira sama s seboj: pri tem smo namreč ugotovili, da ima temna snov zelo drugačne lastnosti kot snov, ki jo lahko merimo tu na Zemlji in zato odpira nova področja tako fizike osnovnih delcev kot tudi astronomije.

V čem je drugačna?

Drugačna je v tem, da delci ne interagirajo sami s seboj, to pomeni, da ne interagirajo s svetlobo in tudi ne povzročajo trkov sami s seboj. Predstavljajte si, če trčimo oblak plina z drugim oblakom plina, bodo delci interagirali, prišlo bo do trkov, plin se bo segrel, v primeru temne snovi pa se to ne zgodi.

Maruša, decembra odhajate na Havaje, kaj boste počeli tam?

Odhajam na nova opazovanja. Na enem največjih optičnih teleskopov na Havajih bomo opazovali prve galaksije, ki so nastale v vesolju. Gre za izjemno težka opazovanja in upam, da bomo dobili kakšne rezultate.

So tudi povezana z vašo temo, temno snovjo?

Povezana so mogoče ne čisto neposredno, ampak posredno. Uporabljamo lečenje, ki nam, ki ne samo nam omogoča, da vemo, kako je temna snov porazdeljena, ampak ker deluje tako kot navadne leče, nam svetlobo, ki prihaja iz oddaljene galaksije, ojača in s tem lahko opazujemo galaksije, ki jih drugače brez lečenja ne bi mogli.

Maruša Bradač, ki je zdaj profesorica na fizikalnem oddelku Kalifornijske univerze v Daviesu, rada poudarja svoje korenine. Letos bo predavala tudi študentom Fakultete za naravoslovje in matematiko v Mariboru. Meni, da je zelo pomemben dober študij, za katerega imajo naši študenti fizike tako v Ljubljani kot Mariboru prav vse pogoje in dobro podlago potem za nadaljnje raziskave in študij v tujini. Pred dobrim letom je poleg astrofizike začela poučevati predmet, ki govori o tem, kako stvari delujejo. Fiziko, ki se je številni študentje bojijo in se jim zdi nekaj abstraktnega, jim želi približati z razlagami iz vsakdanjega življenja, od fizike valov do smučanja in deskanja. Tako kot sta na primer smučanje ali pa ravnovesje sil na klancu fizikalno gledano v bistvu identična pojma, nas pa nedvomno bolj pritegne izraz smučanje. Veliko enostavnih stvari se je naučila tudi sama, na primer, kako odgovoriti na vprašanje, zakaj imajo snežinke šest in ne denimo osem krakov: ”Gre zato , da ima kristal vode oziroma ledu obliko heksagona in potem na tistih konicah začne snežinka rasti. Prav zaradi tega so vedno šestkrake. Torej, če boste videli osemkrako snežinko zdaj pred božičem, ko boste zavijali, vedite, da ta ni pravilna.


Frekvenca X

692 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Temna snov - prof. dr. Maruša Bradač

08.12.2011


Danes vemo, da je večina snovi v vesolju tako imenovana temna snov, raziskovanje njenih lastnosti pa je ena osrednjih tem vesoljskih raziskav.

Astronomi so za določanje lokacije temne snovi v jati uporabili pojav, ki se imenuje gravitacijsko lečenje. Ko svetlobni žarki potujejo skozi gravitacijsko polje v jati, se ukrivijo, pri čemer se podoba galaksije popači. Prav ta popačenja s precejšnjo verjetnostjo odkrivajo, kje je temna snov razporejena.

Pomagajmo si s prispodobo: predstavljamo si, da naročimo kapučino. Vidimo, da nam natakar ni prinesel prazne skodelice, po obnašanju pene lahko sklepamo na količino in nekatere lastnosti nevidne kave pod njo.

Vseeno pa bomo kavo videli šele, če bomo odpili peno, nato bomo spoznali tudi njen okus. Kot je večina kapučina kava, je tudi večina snovi v vesolju temne. V zadnjih letih smo v raziskavah in razumevanju temne snovi v primerjavi s kapučinom prišli do srebanja pene.

Mnoga vprašanja o vesolju ostajajo torej odprta in eno teh je prav gotovo sestava temne snovi. Pri tem je bil bistven prispevek naše gostje dr. Maruše Bradač.

V preteklosti nedvoumno pokazala, da temna snov za razliko od običajne snovi čuti le gravitacijski privlak. Ugotovila je, da se ob trku skupin galaksij njihova temna snov loči od običajne snovi, ki je izpostavljena tudi negravitacijskim silam. Ti rezultati zbujajo upanje, da bomo naravo temne snovi kmalu bolje razumeli.

Dr. Maruša Bradač, prve domneve o obstoju temne snovi so stare že 78 let. Lahko razložite, kaj je Fritza Zwickyja in Vero Rubin pripeljalo do tako nenavadnega sklepa?

Torej oba Fritz Zwicky in Vera Rubin sta merila hitrosti zvezd in galaksij v samih galaksijah in jatah galaksij in ko sta izmerila te hitrosti, sta ugotovila , da so hitrosti prevelike za to, kar smo vedeli takrat o galaksijah in jatah galaksij. Predstavljajte si to mogoče kot zračnico. Če je v zračnici prevelik tlak, bo zračnica počila – in prav tako seveda v vesolju nimamo zračnic – ampak če se galaksije gibljejo prehitro, potem jih ta težnostni privlak ne more obdržati skupaj in se v bistvu začnejo gibati, ne ostanejo skupaj kot enota in prav zaradi tega sta oba ugotovila, da tako v galaksijah kot v jatah galaksij obstaja snov, ki oboje drži skupaj in prav to snov sta poimenovala temna snov.

Nova opazovanja prvotne domneve potrjujejo, seveda pa so zmožnosti današnjih teleskopov bistveno večje kot nekoč in raziskovanje lastnosti temne snovi je ena osrednjih tem današnjih raziskav vesolja. Se s tem odpirajo tudi bolj vznemirljive možnosti?

Seveda, novi  teleskopi in pospeševalniki prinašajo nove možnosti, te možnosti so trenutno Fermijev teleskop, ki meri, kako temna snov interagira sama s sabo in pa seveda veliki Hadronski pospeševalnik, ki nam bo, upajmo, pomagal izmeriti maso delcev temne snovi.

Trki jat galaksij, ki nam razkrijejo obstoj in lastnosti temne snovi, pomenijo, da je na kupu zelo veliko običajne in temne snovi. Zato so oddaljeni objekti, ki so za jato galaksij, videti popačeni. Je tak pojav gravitacijskega lečenja mogoče preprosto razumeti? Kaj novega se lahko pri tem naučimo?

Že ime pove, lečenje, ta pojav lahko razumemo z navadnim pojavom optike, ki smo ga vsi vajeni, torej navadne leče, samo tukaj je razlika, ker so leče, ki jih imamo, ki jih uporabljamo v vsakdanjem življenju, narejene tako, da slike ne popačijo. V bistvu mi ne želimo, da bi se slika popačila, mi samo želimo videti večje ali bolj ostro. V primeru gravitacijskega lečenja pa pride do popačenja in ta pojav je mogoče razumeti morda z malce drugačno lečo. Če vzamete kozarec vina in pogledate na primer svečo, ne skozi kozarec, ampak skozi podstavek kozarca, boste videli prav te popačitve, ki jih mi opazujemo v jatah galaksij. Pri tem se lahko ogromno naučimo, naučimo se, kako je snov razporejena v jatah galaksij in pa seveda tudi, kako interagira sama s seboj in tudi z navadno snovjo.

Narave temne snovi še ne poznamo, vseeno pa nova opazovanja njene lastnosti vedno bolj opredeljujejo. Je ta snov razporejena gladko ali grudasto, lahko o njej povemo že kaj konkretnega?

Torej snov je razporejena večinoma gladko, ampak ne tako gladko, kot je to na primer pri temni energiji. Še vedno je snov razporejena okoli galaksij, okoli jat galaksij. Kaj lahko povemo še bolj konkretnega? Verjetno je trenutno najbolj zanimivo, da lahko zmerimo lastnosti te temne snovi in kako interagira sama s seboj: pri tem smo namreč ugotovili, da ima temna snov zelo drugačne lastnosti kot snov, ki jo lahko merimo tu na Zemlji in zato odpira nova področja tako fizike osnovnih delcev kot tudi astronomije.

V čem je drugačna?

Drugačna je v tem, da delci ne interagirajo sami s seboj, to pomeni, da ne interagirajo s svetlobo in tudi ne povzročajo trkov sami s seboj. Predstavljajte si, če trčimo oblak plina z drugim oblakom plina, bodo delci interagirali, prišlo bo do trkov, plin se bo segrel, v primeru temne snovi pa se to ne zgodi.

Maruša, decembra odhajate na Havaje, kaj boste počeli tam?

Odhajam na nova opazovanja. Na enem največjih optičnih teleskopov na Havajih bomo opazovali prve galaksije, ki so nastale v vesolju. Gre za izjemno težka opazovanja in upam, da bomo dobili kakšne rezultate.

So tudi povezana z vašo temo, temno snovjo?

Povezana so mogoče ne čisto neposredno, ampak posredno. Uporabljamo lečenje, ki nam, ki ne samo nam omogoča, da vemo, kako je temna snov porazdeljena, ampak ker deluje tako kot navadne leče, nam svetlobo, ki prihaja iz oddaljene galaksije, ojača in s tem lahko opazujemo galaksije, ki jih drugače brez lečenja ne bi mogli.

Maruša Bradač, ki je zdaj profesorica na fizikalnem oddelku Kalifornijske univerze v Daviesu, rada poudarja svoje korenine. Letos bo predavala tudi študentom Fakultete za naravoslovje in matematiko v Mariboru. Meni, da je zelo pomemben dober študij, za katerega imajo naši študenti fizike tako v Ljubljani kot Mariboru prav vse pogoje in dobro podlago potem za nadaljnje raziskave in študij v tujini. Pred dobrim letom je poleg astrofizike začela poučevati predmet, ki govori o tem, kako stvari delujejo. Fiziko, ki se je številni študentje bojijo in se jim zdi nekaj abstraktnega, jim želi približati z razlagami iz vsakdanjega življenja, od fizike valov do smučanja in deskanja. Tako kot sta na primer smučanje ali pa ravnovesje sil na klancu fizikalno gledano v bistvu identična pojma, nas pa nedvomno bolj pritegne izraz smučanje. Veliko enostavnih stvari se je naučila tudi sama, na primer, kako odgovoriti na vprašanje, zakaj imajo snežinke šest in ne denimo osem krakov: ”Gre zato , da ima kristal vode oziroma ledu obliko heksagona in potem na tistih konicah začne snežinka rasti. Prav zaradi tega so vedno šestkrake. Torej, če boste videli osemkrako snežinko zdaj pred božičem, ko boste zavijali, vedite, da ta ni pravilna.


16.05.2024

Učinkoviti altruizem med racionalnostjo in čustvi

Kako lahko naredim kar največ dobrega? Naj premišljeno doniram samo skrbno izbranim humanitarnim organizacijam ali naj se raje odločam čustveno in pomagam po trenutni inerciji? Pod drobnogled smo vzeli koncept učinkovitega altruizma, ki skuša pomagati na podlagi merljivih dokazov, hkrati pa je deležen tudi številnih kritik. Razpravljamo o različnih konceptih altruizma in dobrodelnosti, vlogi posameznika, države in korporacij.


09.05.2024

Prevare v znanosti: Od superjunaka do lažnivca

Ranga Dias z ameriške univerze Rochester je leta 2020 zaslovel, potem ko je v reviji Nature poročal o prvem superprevodniku pri sobni temperaturi. To je bil velikanski uspeh, eden izmed svetih gralov moderne fizike, ki je Diasu na široko odprl pot do Nobelove nagrade, svetu pa do učinkovitejše prihodnosti z manj izgubami energije. A danes vemo, da je za njegovim domnevnim odkritjem prevara in vrsta goljufij. Poneverbe podatkov v znanosti postajajo vse pogostejše, dodatno skrb vnaša sivo polje umetne inteligence, ki namesto znanstvenikov lahko piše tudi članke. Kako je z integriteto v znanosti, kako lahko vemo, kaj je res in kdo zavaja?


02.05.2024

Misliti velikost: Od liliputancev do velikanov

Potujemo v zgodovino našega planeta in odkrivamo največja in najmanjša bitja, ki so ga poseljevala. Zagrizemo tudi v iskanje odgovora, kakšen mojstrski kipar je narava, ki se je domislila človeka – ravno prav velikega sesalca z nadpovprečno velikimi možgani.


25.04.2024

Kaj bi Kant porekel o Chat GPT-ju in našem podnebnem ravnanju?

V ponedeljek je minilo 300 let od rojstva Immanuela Kanta, slovitega modreca iz Königsberga, ki je močno zaznamoval filozofijo. Kant velja za prvega sodobnega filozofa, njegovo delo pa presega meje časa in nam še vedno predstavlja prvovrstno oporo pri naslavljanju temeljnih vprašanj o našem obstoju, našem razumevanju in naši odgovornosti.


18.04.2024

Velike živalske migracije: Epsko popotovanje, ki v marsičem ostaja nepojasnjeno

Vsako leto se nad našimi glavami seli na milijarde ptic, žuželk, netopirjev; njihova epska potovanja povezujejo celine in niso imuna na vpliv človeka, ki je zadal velik udarec zlasti selitvam velikih sesalcev. Kdo so selivci rekorderji, kaj jih žene in kako najdejo svoj cilj?


10.04.2024

Stoletnica elektroencefalografije: "Mi na daleč prisluškujemo možganom"

“Prosimo vas, da zaprete oči, med preiskavo se tudi ne pogovarjamo.” To so začetne besede asistenta v ambulanti za merjenje električne dejavnosti možganov EEG, kamor se je tokrat, ob skorajšnji stoletnici prve meritve na človeku, povabila tudi Frekvenca X. Elektroencefalograf je naprava, ki jo je na človeku prvič uporabil nemški psihiater Hans Berger 6. julija 1924. Kljub svoji starosti se tehnologija do danes ni prav veliko spremenila, ob merjenju dejavnosti še vedno na glavo postavijo elektrode, ob pomoči katerih ugotavljajo mogoča odstopanja od normalne električne dejavnosti možganov. Pravzaprav jim “na daleč” prisluškujejo. In to so delali tudi, ko se je na Nevrološki kliniki pri vodji Centra za epilepsijo odraslih dr. Bogdanu Lorberju oglasila Maja Stepančič. Vabljeni torej na posebno zvočno izkušnjo, prisluškovali boste lahko preiskavi EEG.


04.04.2024

Oceani: Pregreti modri motor planeta

Če omenimo oceane, na kaj pomislite? Večina ljudi pomisli na ribe in na njihovo slanost …, na biologijo in kemijo morja torej. Toda tisto, kar res zaznamuje oceane, je njihova fizika.


28.03.2024

Znanost v marcu: Od ekstremofilnih gliv, anafilaksije, do fizikalne fotografije

Tokratna Frekvenca X se spet sprehaja po največjih ali najzanimivejših dosežkih meseca. Marec je mesec, ko naša oddaja praznuje rojstni dan, mesec, ko se podeljujejo Jesenkove nagrade; letos je nagrado za življenjsko delo prejela prof. dr. Nina Gunde Cimerman z biotehniške fakultete, ki bo tudi naša gostja. Poleg tega naj omenimo še nekaj novic iz sveta znanosti: govorili bomo o pomembni raziskavi Univerzitetne klinike za pljučne bolezni in alergijo Golnik v zvezi z anafilaksijo, povabili se bomo na pojedino zvezd, ki se hranijo tudi s planeti, in odgovorili na vprašanje, zakaj antropocen ne bo postal uradno poimenovanje dobe, v kateri ima največji vpliv na okolje človek.


22.03.2024

Frekvenca X pred občinstvom: Od orjakov do liliputancev

Je biti velik ali majhen v naravi prednost ali slabost? Kaj pa zares velik? Frekvenca X, poljudnoznanstvena oddaja Vala 202, svoj 15. rojstni dan praznuje s sebi enakimi. Pred mladim občinstvom in v čisto pravem radijskem studiu načenjamo temo velikosti in kako ta vpliva na ves živi svet okoli nas. Potujte z nami skozi zgodovino našega planeta in odkrijte največja bitja, ki so ga poseljevala. Kaj je pripomoglo k temu, da so po Zemlji nekoč lomastili megalomanski kuščarji in kako so se sploh premikali? Zakaj so kiti še dandanes tako ogromni in ali so orjaški pajki in kačji pastirji sploh mogoči? In kaj imata o fantazijskih bitjih, kot so leteči zmaji, krilati konji pegazi, palčki in velikani iz pripovedk, povedati fizika in biologija? Zagrizli pa bomo tudi v iskanje odgovora, kakšen mojstrski kipar je narava, ki se je domislila človeka – ravno prav velikega sesalca z nadpovprečno velikimi možgani. Kako se je z našo velikostjo igrala evolucija in do kod še lahko zrastemo? Kako bi živeli, če bi se nenadoma – kot Alica – povečali ali pomanjšali? Zaneslo pa nas bo tudi daleč stran v vesolje z misijo, da se domislimo planeta, na katerem bi lahko obstajali velikani.


21.03.2024

Tomaž Zwitter: Kot človeštvo smo spoznali, da smo manj in manj posebni

Preselimo se 15 let v preteklost, natančneje – odpotujemo v 9. april leta 2009, ko je Mija Škrabec Arbanas pripravila eno izmed prvih oddaj, ki so v Frekvenci X obravnavale vesolje. V tem času se je marsikaj spremenilo: od vse daljših sprehodov astronavtov zunaj vesoljskih postaj do napredka pri razvoju vesoljskih oblačil, ki omogočajo boljšo gibljivost, do raztrosa človeškega pepela v vesolju. 15-letni napredek v raziskovanju vesolja komentira naš dolgoletni strokovni sodelavec astronom in astrofizik Tomaž Zwitter.


21.03.2024

Roger Penrose: O modi, veri in fantaziji v fiziki

Gost v tokratni Frekvenci X je bil Roger Penrose, zelo eminentno ime svetovne matematične fizike, ki se ga velikokrat omenja v povezavi Stephenom Hawkingom. Penrose je v svoji dolgi karieri pomembno prispeval predvsem k teoriji splošne relativnosti, je pa tudi avtor tako imenovanih Penrose-Hawking teoremov o singularnostih, ki so mu prinesli Nobelovo nagrado in ki pravijo, da se črne luknje tvorijo iz zelo splošnih pogojev sesedanja materije ter da se v središču črne luknje ustvari singularnost v končnem času. V oddaji se z njim sprašujemo tudi, kaj je v sodobni fiziki moda, kaj vera in kaj fantazija, dotaknemo se tudi vprašanja, kako pri umetni inteligenci 'izračunati' razumevanje in kako enigmatična je fizika možganov.


14.03.2024

Pornografija, možgani in zasvojenost

Ob Tednu možganov, ki je letos posvečen spolnosti, raziskujemo odvisnost od pornografije, kakšni so simptomi, kaj se dogaja v naših možganih, zakaj je lahko izpostavljenost otrok in mladostnikov pornografiji problematična in kakšne dodatne nevarnosti je prinesel razmah sodobnih tehnologij. V skupni epizodi z oddajo Možgani na dlani na Prvem tudi o pozitivnih plateh rabe pornografije.


07.03.2024

Nevidni svet predorov

Ste vedeli, da bo na celotni progi drugega tira porabljenih za pet Eifflovih stolpov jeklenih armatur? Inženirji, gradbinci in izvajalci del pa seveda pri gradnji ne uporabljajo le kovinskih pripomočkov. Kakšna je znanost za gradnjo predorov, kako ti sploh nastanejo, kdo pri tem sodeluje in kje vse lahko strokovnjaki sploh kopljejo predore? V oddaji slišite tudi zvoke iz globin enega izmed slovenskih predorov.


29.02.2024

Znanost v februarju: O dinozavrih, anakondi, Hallersteinu in avtoimunskih boleznih

Februar je pri koncu in Frekvenca X njegove zadnje ure, ki so zaradi prestopnega leta pravzaprav bonus, izkorišča za prelet tem, ki so ta mesec odmevale v znanosti. Maja Ratej raziskuje avtoimunske bolezni in zakaj jih bomo lahko morda v dogledni prihodnosti uspešno zdravili. Preverila je tudi, kakšna velikanka je na novo odkrita anakonda v Južni Ameriki in koliko več vemo o dinozavrih 200 let po njihovem odkritju. Več pa tudi o tem, da se lahko v Ljubljani po novem pomudite pri Hallersteinovem zvezdnem opazovalniku, pa o ameriškem zasebnem naskoku na Luno, rasni genetiki in celo gensko spremenjenih bananah.


22.02.2024

Reportaža iz CERN-a: Kjer premikajo meje znanosti!

Pred kratkim smo se s Frekvenco X mudili v CERN-u, Evropski organizaciji za jedrske raziskave, v kateri se že 70 let ukvarjajo s trki osnovnih delcev. Gre za megalomansko raziskovalno območje na meji med Švico in Francijo v Ženevi, pod katerim je 27 kilometrov dolg Veliki hadronski trkalnik. V njem so, spomnimo, leta 2012 ob pomoči velikanskih detektorjev potrdili obstoj Higgsovega bozona. Trki, ki se z velikanskimi energijami in hitrostmi dogajajo v pospeševalniku, razkrivajo delovanje vesolja v njegovih prvih trenutkih, ob tem pa se poskušajo raziskovalci dokopati tudi do odgovorov na to, kaj bi utegnila biti temna snov in kako bolje spoznati antimaterijo.


14.02.2024

Človeška napaka

Če odgovorna oseba po hudi delovni nesreči javnost obvesti, da je bil vzrok tragičnega dogodka človeška napaka, nas takšno pojasnilo ne sme pomiriti, ampak nas mora še bolj vznemiriti. Skladno s sodobnimi smernicami za zagotavljanje varnosti, ki temeljijo na znanstvenih raziskavah, je človeška napaka sprejemljiv vzrok za razlago neželenega dogodka le v zelo redkih primerih. Po temeljiti preučitvi okoliščin nesreče se večinoma namreč izkaže, da je za napako kriva sistemska pomanjkljivost in ne nepozoren posameznik. Česa nas lahko naučijo človeške napake, kakšni psihološki in varnostni mehanizmi so v ozadju, kako je zdravniškimi napakami in kakšna bo vloga umetne inteligence?


01.02.2024

Znanost v januarju: O milnih mehurčkih, starodavni Amazoniji in napredku pri zdravljenju raka

Pred evropskim dnem boja proti raku Maja Ratej poizveduje o napredku pri diagnostiki in zdravljenju raka, zastavlja pa si tudi vprašanje, kakšno liso je na tem področju pustila koronavirusna doba. V januarski beri novic na področju znanosti jo zanimajo odmevno odkritje 2500 let starih ostankov kompleksa mest v Amazoniji in novi poskusi pošiljanja plovil na Luno. Za konec pod drobnogled vzame še raziskovalni dosežek slovenskih znanstvenikov, ki je januarja odmeval tudi v mednarodnem tisku o popularni znanosti, in sicer kako iz milnega mehurčka ustvariti natančen laser.


25.01.2024

Plavajoča mesta? Zakaj pa ne!

V zadnjih nekaj letih se v spletnih časopisih pogosto znajdejo članki o mestih, ki bodo krojila našo prihodnost bivanja. Trajnostno, zeleno, obnovljivi viri energije, javni prevoz, 15-minutno mesto, individualnost bomo zamenjali za skupnost … to so pogosto napovedi velikih arhitekturnih birojev, ki snujejo tako imenovana mesta prihodnosti. Mesta, ki bodo nasledila takšna, kot jih poznamo danes.


18.01.2024

Izkašljano in vročično: Naše telo kot uigran orkester v boju proti virusom

V delu leta, ko na nas od vsepovsod prežijo okužbe dihal, pri Frekvenci X opazujemo simfonijo našega telesa v boju zoper njih. Še posebej nas zanimajo vročina, kašelj in kihanje, nad katerimi bdijo različni možganski dirigenti.


11.01.2024

Prehranski Frankenstein: Skrajno predelana hrana

Povprečen posameznik v industrializiranih državah s hrano letno zaužije osem kilogramov aditivov, kupi pa le dva kilograma moke. Trend prehranjevanja, ki ga narekujeta pomanjkanje časa in velika količina priročnih, za takojšnje zaužitje pripravljenih živilskih izdelkov, gre namreč v smer, ko vedno manj obrokov pripravimo sami. Pri tem zaužijemo vedno več tako imenovane ultraprocesirane hrane, med katero spadajo čips, zamrznjena lazanja, sladke žitarice, rastlinske alternative za sir in meso in podobno. Kako taka hrana vpliva na naše telo in svet okoli nas? Kako jo prepoznati?


Stran 2 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov