Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Temna snov - prof. dr. Maruša Bradač

08.12.2011


Danes vemo, da je večina snovi v vesolju tako imenovana temna snov, raziskovanje njenih lastnosti pa je ena osrednjih tem vesoljskih raziskav.

Astronomi so za določanje lokacije temne snovi v jati uporabili pojav, ki se imenuje gravitacijsko lečenje. Ko svetlobni žarki potujejo skozi gravitacijsko polje v jati, se ukrivijo, pri čemer se podoba galaksije popači. Prav ta popačenja s precejšnjo verjetnostjo odkrivajo, kje je temna snov razporejena.

Pomagajmo si s prispodobo: predstavljamo si, da naročimo kapučino. Vidimo, da nam natakar ni prinesel prazne skodelice, po obnašanju pene lahko sklepamo na količino in nekatere lastnosti nevidne kave pod njo.

Vseeno pa bomo kavo videli šele, če bomo odpili peno, nato bomo spoznali tudi njen okus. Kot je večina kapučina kava, je tudi večina snovi v vesolju temne. V zadnjih letih smo v raziskavah in razumevanju temne snovi v primerjavi s kapučinom prišli do srebanja pene.

Mnoga vprašanja o vesolju ostajajo torej odprta in eno teh je prav gotovo sestava temne snovi. Pri tem je bil bistven prispevek naše gostje dr. Maruše Bradač.

V preteklosti nedvoumno pokazala, da temna snov za razliko od običajne snovi čuti le gravitacijski privlak. Ugotovila je, da se ob trku skupin galaksij njihova temna snov loči od običajne snovi, ki je izpostavljena tudi negravitacijskim silam. Ti rezultati zbujajo upanje, da bomo naravo temne snovi kmalu bolje razumeli.

Dr. Maruša Bradač, prve domneve o obstoju temne snovi so stare že 78 let. Lahko razložite, kaj je Fritza Zwickyja in Vero Rubin pripeljalo do tako nenavadnega sklepa?

Torej oba Fritz Zwicky in Vera Rubin sta merila hitrosti zvezd in galaksij v samih galaksijah in jatah galaksij in ko sta izmerila te hitrosti, sta ugotovila , da so hitrosti prevelike za to, kar smo vedeli takrat o galaksijah in jatah galaksij. Predstavljajte si to mogoče kot zračnico. Če je v zračnici prevelik tlak, bo zračnica počila – in prav tako seveda v vesolju nimamo zračnic – ampak če se galaksije gibljejo prehitro, potem jih ta težnostni privlak ne more obdržati skupaj in se v bistvu začnejo gibati, ne ostanejo skupaj kot enota in prav zaradi tega sta oba ugotovila, da tako v galaksijah kot v jatah galaksij obstaja snov, ki oboje drži skupaj in prav to snov sta poimenovala temna snov.

Nova opazovanja prvotne domneve potrjujejo, seveda pa so zmožnosti današnjih teleskopov bistveno večje kot nekoč in raziskovanje lastnosti temne snovi je ena osrednjih tem današnjih raziskav vesolja. Se s tem odpirajo tudi bolj vznemirljive možnosti?

Seveda, novi  teleskopi in pospeševalniki prinašajo nove možnosti, te možnosti so trenutno Fermijev teleskop, ki meri, kako temna snov interagira sama s sabo in pa seveda veliki Hadronski pospeševalnik, ki nam bo, upajmo, pomagal izmeriti maso delcev temne snovi.

Trki jat galaksij, ki nam razkrijejo obstoj in lastnosti temne snovi, pomenijo, da je na kupu zelo veliko običajne in temne snovi. Zato so oddaljeni objekti, ki so za jato galaksij, videti popačeni. Je tak pojav gravitacijskega lečenja mogoče preprosto razumeti? Kaj novega se lahko pri tem naučimo?

Že ime pove, lečenje, ta pojav lahko razumemo z navadnim pojavom optike, ki smo ga vsi vajeni, torej navadne leče, samo tukaj je razlika, ker so leče, ki jih imamo, ki jih uporabljamo v vsakdanjem življenju, narejene tako, da slike ne popačijo. V bistvu mi ne želimo, da bi se slika popačila, mi samo želimo videti večje ali bolj ostro. V primeru gravitacijskega lečenja pa pride do popačenja in ta pojav je mogoče razumeti morda z malce drugačno lečo. Če vzamete kozarec vina in pogledate na primer svečo, ne skozi kozarec, ampak skozi podstavek kozarca, boste videli prav te popačitve, ki jih mi opazujemo v jatah galaksij. Pri tem se lahko ogromno naučimo, naučimo se, kako je snov razporejena v jatah galaksij in pa seveda tudi, kako interagira sama s seboj in tudi z navadno snovjo.

Narave temne snovi še ne poznamo, vseeno pa nova opazovanja njene lastnosti vedno bolj opredeljujejo. Je ta snov razporejena gladko ali grudasto, lahko o njej povemo že kaj konkretnega?

Torej snov je razporejena večinoma gladko, ampak ne tako gladko, kot je to na primer pri temni energiji. Še vedno je snov razporejena okoli galaksij, okoli jat galaksij. Kaj lahko povemo še bolj konkretnega? Verjetno je trenutno najbolj zanimivo, da lahko zmerimo lastnosti te temne snovi in kako interagira sama s seboj: pri tem smo namreč ugotovili, da ima temna snov zelo drugačne lastnosti kot snov, ki jo lahko merimo tu na Zemlji in zato odpira nova področja tako fizike osnovnih delcev kot tudi astronomije.

V čem je drugačna?

Drugačna je v tem, da delci ne interagirajo sami s seboj, to pomeni, da ne interagirajo s svetlobo in tudi ne povzročajo trkov sami s seboj. Predstavljajte si, če trčimo oblak plina z drugim oblakom plina, bodo delci interagirali, prišlo bo do trkov, plin se bo segrel, v primeru temne snovi pa se to ne zgodi.

Maruša, decembra odhajate na Havaje, kaj boste počeli tam?

Odhajam na nova opazovanja. Na enem največjih optičnih teleskopov na Havajih bomo opazovali prve galaksije, ki so nastale v vesolju. Gre za izjemno težka opazovanja in upam, da bomo dobili kakšne rezultate.

So tudi povezana z vašo temo, temno snovjo?

Povezana so mogoče ne čisto neposredno, ampak posredno. Uporabljamo lečenje, ki nam, ki ne samo nam omogoča, da vemo, kako je temna snov porazdeljena, ampak ker deluje tako kot navadne leče, nam svetlobo, ki prihaja iz oddaljene galaksije, ojača in s tem lahko opazujemo galaksije, ki jih drugače brez lečenja ne bi mogli.

Maruša Bradač, ki je zdaj profesorica na fizikalnem oddelku Kalifornijske univerze v Daviesu, rada poudarja svoje korenine. Letos bo predavala tudi študentom Fakultete za naravoslovje in matematiko v Mariboru. Meni, da je zelo pomemben dober študij, za katerega imajo naši študenti fizike tako v Ljubljani kot Mariboru prav vse pogoje in dobro podlago potem za nadaljnje raziskave in študij v tujini. Pred dobrim letom je poleg astrofizike začela poučevati predmet, ki govori o tem, kako stvari delujejo. Fiziko, ki se je številni študentje bojijo in se jim zdi nekaj abstraktnega, jim želi približati z razlagami iz vsakdanjega življenja, od fizike valov do smučanja in deskanja. Tako kot sta na primer smučanje ali pa ravnovesje sil na klancu fizikalno gledano v bistvu identična pojma, nas pa nedvomno bolj pritegne izraz smučanje. Veliko enostavnih stvari se je naučila tudi sama, na primer, kako odgovoriti na vprašanje, zakaj imajo snežinke šest in ne denimo osem krakov: ”Gre zato , da ima kristal vode oziroma ledu obliko heksagona in potem na tistih konicah začne snežinka rasti. Prav zaradi tega so vedno šestkrake. Torej, če boste videli osemkrako snežinko zdaj pred božičem, ko boste zavijali, vedite, da ta ni pravilna.


Frekvenca X

683 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Temna snov - prof. dr. Maruša Bradač

08.12.2011


Danes vemo, da je večina snovi v vesolju tako imenovana temna snov, raziskovanje njenih lastnosti pa je ena osrednjih tem vesoljskih raziskav.

Astronomi so za določanje lokacije temne snovi v jati uporabili pojav, ki se imenuje gravitacijsko lečenje. Ko svetlobni žarki potujejo skozi gravitacijsko polje v jati, se ukrivijo, pri čemer se podoba galaksije popači. Prav ta popačenja s precejšnjo verjetnostjo odkrivajo, kje je temna snov razporejena.

Pomagajmo si s prispodobo: predstavljamo si, da naročimo kapučino. Vidimo, da nam natakar ni prinesel prazne skodelice, po obnašanju pene lahko sklepamo na količino in nekatere lastnosti nevidne kave pod njo.

Vseeno pa bomo kavo videli šele, če bomo odpili peno, nato bomo spoznali tudi njen okus. Kot je večina kapučina kava, je tudi večina snovi v vesolju temne. V zadnjih letih smo v raziskavah in razumevanju temne snovi v primerjavi s kapučinom prišli do srebanja pene.

Mnoga vprašanja o vesolju ostajajo torej odprta in eno teh je prav gotovo sestava temne snovi. Pri tem je bil bistven prispevek naše gostje dr. Maruše Bradač.

V preteklosti nedvoumno pokazala, da temna snov za razliko od običajne snovi čuti le gravitacijski privlak. Ugotovila je, da se ob trku skupin galaksij njihova temna snov loči od običajne snovi, ki je izpostavljena tudi negravitacijskim silam. Ti rezultati zbujajo upanje, da bomo naravo temne snovi kmalu bolje razumeli.

Dr. Maruša Bradač, prve domneve o obstoju temne snovi so stare že 78 let. Lahko razložite, kaj je Fritza Zwickyja in Vero Rubin pripeljalo do tako nenavadnega sklepa?

Torej oba Fritz Zwicky in Vera Rubin sta merila hitrosti zvezd in galaksij v samih galaksijah in jatah galaksij in ko sta izmerila te hitrosti, sta ugotovila , da so hitrosti prevelike za to, kar smo vedeli takrat o galaksijah in jatah galaksij. Predstavljajte si to mogoče kot zračnico. Če je v zračnici prevelik tlak, bo zračnica počila – in prav tako seveda v vesolju nimamo zračnic – ampak če se galaksije gibljejo prehitro, potem jih ta težnostni privlak ne more obdržati skupaj in se v bistvu začnejo gibati, ne ostanejo skupaj kot enota in prav zaradi tega sta oba ugotovila, da tako v galaksijah kot v jatah galaksij obstaja snov, ki oboje drži skupaj in prav to snov sta poimenovala temna snov.

Nova opazovanja prvotne domneve potrjujejo, seveda pa so zmožnosti današnjih teleskopov bistveno večje kot nekoč in raziskovanje lastnosti temne snovi je ena osrednjih tem današnjih raziskav vesolja. Se s tem odpirajo tudi bolj vznemirljive možnosti?

Seveda, novi  teleskopi in pospeševalniki prinašajo nove možnosti, te možnosti so trenutno Fermijev teleskop, ki meri, kako temna snov interagira sama s sabo in pa seveda veliki Hadronski pospeševalnik, ki nam bo, upajmo, pomagal izmeriti maso delcev temne snovi.

Trki jat galaksij, ki nam razkrijejo obstoj in lastnosti temne snovi, pomenijo, da je na kupu zelo veliko običajne in temne snovi. Zato so oddaljeni objekti, ki so za jato galaksij, videti popačeni. Je tak pojav gravitacijskega lečenja mogoče preprosto razumeti? Kaj novega se lahko pri tem naučimo?

Že ime pove, lečenje, ta pojav lahko razumemo z navadnim pojavom optike, ki smo ga vsi vajeni, torej navadne leče, samo tukaj je razlika, ker so leče, ki jih imamo, ki jih uporabljamo v vsakdanjem življenju, narejene tako, da slike ne popačijo. V bistvu mi ne želimo, da bi se slika popačila, mi samo želimo videti večje ali bolj ostro. V primeru gravitacijskega lečenja pa pride do popačenja in ta pojav je mogoče razumeti morda z malce drugačno lečo. Če vzamete kozarec vina in pogledate na primer svečo, ne skozi kozarec, ampak skozi podstavek kozarca, boste videli prav te popačitve, ki jih mi opazujemo v jatah galaksij. Pri tem se lahko ogromno naučimo, naučimo se, kako je snov razporejena v jatah galaksij in pa seveda tudi, kako interagira sama s seboj in tudi z navadno snovjo.

Narave temne snovi še ne poznamo, vseeno pa nova opazovanja njene lastnosti vedno bolj opredeljujejo. Je ta snov razporejena gladko ali grudasto, lahko o njej povemo že kaj konkretnega?

Torej snov je razporejena večinoma gladko, ampak ne tako gladko, kot je to na primer pri temni energiji. Še vedno je snov razporejena okoli galaksij, okoli jat galaksij. Kaj lahko povemo še bolj konkretnega? Verjetno je trenutno najbolj zanimivo, da lahko zmerimo lastnosti te temne snovi in kako interagira sama s seboj: pri tem smo namreč ugotovili, da ima temna snov zelo drugačne lastnosti kot snov, ki jo lahko merimo tu na Zemlji in zato odpira nova področja tako fizike osnovnih delcev kot tudi astronomije.

V čem je drugačna?

Drugačna je v tem, da delci ne interagirajo sami s seboj, to pomeni, da ne interagirajo s svetlobo in tudi ne povzročajo trkov sami s seboj. Predstavljajte si, če trčimo oblak plina z drugim oblakom plina, bodo delci interagirali, prišlo bo do trkov, plin se bo segrel, v primeru temne snovi pa se to ne zgodi.

Maruša, decembra odhajate na Havaje, kaj boste počeli tam?

Odhajam na nova opazovanja. Na enem največjih optičnih teleskopov na Havajih bomo opazovali prve galaksije, ki so nastale v vesolju. Gre za izjemno težka opazovanja in upam, da bomo dobili kakšne rezultate.

So tudi povezana z vašo temo, temno snovjo?

Povezana so mogoče ne čisto neposredno, ampak posredno. Uporabljamo lečenje, ki nam, ki ne samo nam omogoča, da vemo, kako je temna snov porazdeljena, ampak ker deluje tako kot navadne leče, nam svetlobo, ki prihaja iz oddaljene galaksije, ojača in s tem lahko opazujemo galaksije, ki jih drugače brez lečenja ne bi mogli.

Maruša Bradač, ki je zdaj profesorica na fizikalnem oddelku Kalifornijske univerze v Daviesu, rada poudarja svoje korenine. Letos bo predavala tudi študentom Fakultete za naravoslovje in matematiko v Mariboru. Meni, da je zelo pomemben dober študij, za katerega imajo naši študenti fizike tako v Ljubljani kot Mariboru prav vse pogoje in dobro podlago potem za nadaljnje raziskave in študij v tujini. Pred dobrim letom je poleg astrofizike začela poučevati predmet, ki govori o tem, kako stvari delujejo. Fiziko, ki se je številni študentje bojijo in se jim zdi nekaj abstraktnega, jim želi približati z razlagami iz vsakdanjega življenja, od fizike valov do smučanja in deskanja. Tako kot sta na primer smučanje ali pa ravnovesje sil na klancu fizikalno gledano v bistvu identična pojma, nas pa nedvomno bolj pritegne izraz smučanje. Veliko enostavnih stvari se je naučila tudi sama, na primer, kako odgovoriti na vprašanje, zakaj imajo snežinke šest in ne denimo osem krakov: ”Gre zato , da ima kristal vode oziroma ledu obliko heksagona in potem na tistih konicah začne snežinka rasti. Prav zaradi tega so vedno šestkrake. Torej, če boste videli osemkrako snežinko zdaj pred božičem, ko boste zavijali, vedite, da ta ni pravilna.


18.02.2021

Astrofotografija za telebane

Tokratno Frekvenco X bi lahko naslovili Fotografski vodnik po galaksiji ali pa kar Astrofotografija za telebane, prvi del. Skupaj se bomo učili o tem, kako potovati po vesolju kar z domačega balkona ali s strehe. Svoje iznajdljive in predvsem zelo cenovno dostopne astrofotografske rešitve bo z nami delil angleški astrofizik Rory Griffin.


11.02.2021

Zatiskanje oči pred izumiranjem

Kako se spopadati z zanikanjem izgube biotske raznovrstnosti*


04.02.2021

Kvantna prihodnost 3/3: Varne komunikacije in nevaren nadzor

Kvantne tehnologije prinašajo mnoge prednosti, a tudi nova etična vprašanja in potencialne nevarnosti. Zaradi njih bomo morali spremeniti številne družbene podsisteme.


28.01.2021

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


21.01.2021

Kvantna prihodnost 1/3: Prvi koraki do kvantne premoči

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


14.01.2021

V iskanju superprevodnikov, tehnološkega svetega grala

Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?


07.01.2021

Skrivnosti pod ledom

Pod ledom se skrivajo skrivnosti, ki govorijo o človeški zgodovini in morda tudi prihodnjih pandemijah. A kako dolgo bodo še zaklenjene v led?


30.12.2020

Znanost v letu 2020: Od koronavirusa, vesolja do okoljskih alarmov

Znanost je v letu 2020 prišla izrazito v ospredje. Tja jo je potisnila pandemija, ki je zahtevala znanstvene odgovore in rešitve za ključni zdravstveni problem tega trenutka. Brez dvoma je koronavirus določal prioritete tudi v znanstvenem raziskovanju in hkrati sprožil nekaj velikih sprememb na tem področju. Pa vendar je bilo pestro tudi dogajanje na drugih znanstvenih področjih. V pregledu znanosti v letu 2020 nam bodo Maja Ratej (Val 202), Aljoša Masten (MMC) in Nina Slaček (Prvi in Ars) poleg osrednjih tem – koronavirusa, vesolja ter podnebno-ekološke krize – v pogovoru nanizali tudi prgišče drugih pomembnih prebojev z različnih znanstvenih področij.


30.12.2020

Fizik Jurij Bajc: Tako močnih potresov po svetu letno ni veliko

Po rušilnem potresu na Hrvaškem smo za nekaj pojasnil prosili fizika dr. Jurija Bajca s Pedagoške fakultete v Ljubljani, ki se ukvarja tudi s področjem potresov. Kot pravi, takšni rušilni potresi s tolikšno magnitudo letno na svetu niso pogosti, zgodi se jih le kakšnih sto, na našem območju pa je bila z njim v zadnjem stoletju primerljiva le peščica potresnih sunkov. Za kakšno sproščeno moč je šlo pri tokratnem tresenju tal južno od Zagreba, je tako številčno zaporedje potresov na Balkanu nekaj izrednega ali prej pričakovanega in kakšne potrese sploh imamo na Balkanu, posledica česa so, bo pojasnil na razumljiv in poljuden način. Foto: Bobo


24.12.2020

Božiček pod znanstvenim povečevalnim steklom

Frekvenca X se na predbožični dan odpravlja na potovanje okoli sveta. Ne sama, ampak z Božičkom, njegovimi škrati in seveda z našimi znanstveniki (če seveda pustimo dvom o Božičku ob strani in se prepustimo domišljiji). Skupaj bomo poskušali razvozlati, kako dobremu možu v rdečo-beli opravi, z dolgo belo brado in brki vsako leto uspe pravočasno obdarovati vse otroke in koliko kalorij Božiček pridobi, če v vsaki hiši poje en piškot. Na tej (dolgi) poti pa se bomo ustavili tudi pri božičnem drevescu in preverili, kakšen je evolucijski namen iglic. Ste pripravljeni odkleniti skrivnosti Božičkove znanosti? Če je odgovor da, potem le prisluhnite tokrat praznični Frekvenci X.


17.12.2020

Zaslepljeni od koronakrize pozabljamo na okoljsko

V letu 2020 je veliko pozornosti na področju znanosti prestregel pohod koronavirusa, a v ozadju se pripravlja veliko hujša in bolj dolgoročna nevarnost – okoljska kriza. Zadnji meseci so nam izstavili nove okoljske opomine: od katastrofalnih požarov, velikih orkanov, do tega, da se morska gladina pospešeno dviguje, ledeni pokrov nad Arktiko pa nezadržno krči. Sogovornika klimatologinja dr. Lučka Kajfež Bogat in biokemik dr. Tom Turk opozarjata, da ni več časa za sprenevedanje in da je treba ključne sistemske odločitve začeti sprejemati zdaj. Kmalu bodo namreč spremembe postale nepovratne. V oddaji bomo prelistali tudi odmevno knjigo Davida Attenborougha Življenje na našem planetu – z njo in istoimenskim dokumentarcem je jeseni glasno opozoril, da se je svet znašel v na moč nezavidljivi situaciji in da bomo morali po boju s koronakrizo pokazati še več solidarnosti v soočanju s krizo, ki pesti okolje.


03.12.2020

Misija Gaia: Naša galaksija dobiva rokovski prizvok

Misija Gaia Evropske vesoljske agencija z osupljivo natačnostjo meri velikost naše galaksije in vsega vesolja. Aktualni podatki kažejo na veliko razburkanost in nihanja v naši galaksiji, prof. dr. Tomaž Zwitter pravi, da dogajanje dobiva rokovski prizvok. Komentiramo objavo tretje različice kataloga astronomskih meritev misije Gaia, ki skupaj obsega kar 1,8 milijarde zvezd, njena natančnost pa je primerljiva z merjenjem debeline človeškega lasu čez Atlantik. Za projekt skrbi 500 znanstvenikov, pri obdelavi podatkov imajo pomembno vlogo tudi slovenski strokovnjaki.


26.11.2020

Cepiva in mi: Tekma, kakršne ne pomnimo

Na potovanju po svetu cepiv se bomo v zadnji epizodi serije Cepiva in mi ustavili pri aktualni tekmi, kdo bo prvi priskrbel varno in dovolj učinkovito cepivo proti covidu-19. Evropska komisija je pogodbo o dobavi za zdaj podpisala s šestimi proizvajalci, po najbolj optimističnem scenariju pa naj bi cepiva na evropski trg prišla januarja. Do njih bodo najprej upravičene najranljivejše družbene skupine, o vsem povezanim s cepivom pa bo na voljo tudi namenska aplikacija. V oddaji spoznavamo tudi, kakšen je postopek produkcije cepiva v tovarni in kako cepivo pristojni regulatorni organi sploh registrirajo. Preverili smo tudi, kako bo z njegovo pravično globalno redistribucijo in zagotavljanjem ustreznega transporta, pomudili pa smo se tudi na borzah, kjer so dobre novice o aktualnem cepivu močno prevetrile negativno razpoloženje.


19.11.2020

Cepiva in mi: Fascinantno potovanje do sodobnih cepiv

Potem ko smo v prvem delu miniserije 'Cepiva in mi' cepljenje spoznavali iz zgodovinske perspektive, se bomo v drugem delu spustili na raven molekularne biologije. Cepiva so v zadnjih desetletjih tako izpopolnili, da vse bolje posnemajo delovanje imunskega sistema. O tem pričajo nove vrste cepiv, do katerih se lahko dokopljemo bliskovito; včasih so za to potrebovali desetletja. Kako delujejo cepiva, iz časa so in kako jih dandanes lahko razvijejo tako hitro? Odgovore bomo iskali v novi Frekvenci X.


12.11.2020

Cepiva in mi: Poldruga milijarda življenj!

V tednu, ko so smo dobili prve oprijemljive rezultate o učinkovitosti kandidata za cepivo proti covidu-19, se na Valu 202 obširneje podajamo v svet cepiv. Človek zelo osnovne oblike cepljenja uporablja že več kot tisočletje, raketni pospešek pa je prinesel razvoj mikrobiologije. Cepljenje je v zadnjih 200 letih rešilo do milijardo in pol življenj, v zadnjih letih pa tehnologija razvoja cepiv dobiva še dodaten pospešek. Potem ko so včasih na cepivo čakali po več desetletij, so danes za to potrebni le meseci. O razvoju cepiv, odnosu človeka do cepljenja in o tem, kako cepiva pravzaprav nastanejo, bomo na Valu govorili v okviru posebne miniserije Frekvence X. Cepiva in mi – v vseh preostalih novembrskih četrtkih ob 12h.


05.11.2020

Čudežni svet znanstvene nomenklature

Dragi Homo sapiensi! Potem ko zalijete svoje Ficuse rubiginose in Monstere deliciose, si s skupaj s svojima Canisom familiarisom pri nogah in s Felisom catusom v naročju privoščite novo Frekvenco X. Ta se razgleduje po svetu znanstvene nomenklature živih bitij; in čeprav je ta izključno znanstven, je velikokrat zelo čudežen.


29.10.2020

Govoriti o lažno pozitivnih testih je, enostavno rečeno, zmotno

Obiskali smo ljubljansko izpostavo Nacionalnega laboratorija za zdravje, okolje in hrano in v praksi preverili, kako poteka ugotavljanje novega koronavirusa po metodi PCR.


22.10.2020

Z globalnimi navigacijskimi satelitskimi sistemi lahko sledimo celo velikim hroščem

Ko se vprašamo: Kje smo in kam gremo?, je pri večini najpogostejša rešitev - gumb za lokacijo na pametnem telefonu. Na globalne navigacijske satelitske sisteme se pogosto popolnoma zanašamo, da nas bodo pripeljali do prave lokacije na centimeter natančno. Hkrati ti sistemi delujejo v ozadju mnogih tehnologij, mnoge raziskave v znanosti pa bi bile brez njih popolnoma nemogoče. V Frekvenci X razmišljamo o tem, kakšna tehnologija poganja sisteme, ki jim brez razmisleka pustimo, da nas vsakodnevno vodijo po svetu, kako je v osnovi vojaška tehnologija dobila tako širok nabor civilnih rab in kakšno znanje o navadah živali in delovanju ekosistemov smo pridobili z njihovo pomočjo. Spoznamo tudi, kako so globalni satelitski navigacijski sistemi popisali izjemno živalsko avanturo z volkom v glavni vlogi. Gosta: dr. Oskar Sterle, Fakulteta za gradbeništvo in geodezijo dr. Hubert Potočnik, Katedra za ekologijo Biotehniške fakultete v Ljubljani


15.10.2020

Le eden na 10 000 ljudi ima absolutni posluh

V času, ko bi se morali predvsem bolj in bolje poslušati, znanstveno uho Vala 202 usmerjamo k posluhu. V Frekvenci X bomo danes raziskovali razvoj posluha pri ljudeh in značilnosti absolutnega posluha. Le eden na 10 000 ima absolutni posluh, mi smo našli kar štiri.


08.10.2020

Detektivka hepatitisa C, misterij črnih lukenj in genetske škarje

Nobelove nagrade s področja naravoslovja odkriteljem črnih lukenj, pionirjem najuspešnejšega protivirusnega zdravljenja v zgodovini in izumiteljicama genetskih škarij. V tednu Nobelovih nagrad ob pomoči slovenskih strokovnjakov analiziramo letošnje dobitnike s področja medicine, fizike in kemije. Sodelujejo prof. dr. Mojca Matičič, prof. dr. Andreja Gomboc in prof. dr. Romana Jerala.


Stran 9 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov