Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Temna snov - prof. dr. Maruša Bradač

08.12.2011


Danes vemo, da je večina snovi v vesolju tako imenovana temna snov, raziskovanje njenih lastnosti pa je ena osrednjih tem vesoljskih raziskav.

Astronomi so za določanje lokacije temne snovi v jati uporabili pojav, ki se imenuje gravitacijsko lečenje. Ko svetlobni žarki potujejo skozi gravitacijsko polje v jati, se ukrivijo, pri čemer se podoba galaksije popači. Prav ta popačenja s precejšnjo verjetnostjo odkrivajo, kje je temna snov razporejena.

Pomagajmo si s prispodobo: predstavljamo si, da naročimo kapučino. Vidimo, da nam natakar ni prinesel prazne skodelice, po obnašanju pene lahko sklepamo na količino in nekatere lastnosti nevidne kave pod njo.

Vseeno pa bomo kavo videli šele, če bomo odpili peno, nato bomo spoznali tudi njen okus. Kot je večina kapučina kava, je tudi večina snovi v vesolju temne. V zadnjih letih smo v raziskavah in razumevanju temne snovi v primerjavi s kapučinom prišli do srebanja pene.

Mnoga vprašanja o vesolju ostajajo torej odprta in eno teh je prav gotovo sestava temne snovi. Pri tem je bil bistven prispevek naše gostje dr. Maruše Bradač.

V preteklosti nedvoumno pokazala, da temna snov za razliko od običajne snovi čuti le gravitacijski privlak. Ugotovila je, da se ob trku skupin galaksij njihova temna snov loči od običajne snovi, ki je izpostavljena tudi negravitacijskim silam. Ti rezultati zbujajo upanje, da bomo naravo temne snovi kmalu bolje razumeli.

Dr. Maruša Bradač, prve domneve o obstoju temne snovi so stare že 78 let. Lahko razložite, kaj je Fritza Zwickyja in Vero Rubin pripeljalo do tako nenavadnega sklepa?

Torej oba Fritz Zwicky in Vera Rubin sta merila hitrosti zvezd in galaksij v samih galaksijah in jatah galaksij in ko sta izmerila te hitrosti, sta ugotovila , da so hitrosti prevelike za to, kar smo vedeli takrat o galaksijah in jatah galaksij. Predstavljajte si to mogoče kot zračnico. Če je v zračnici prevelik tlak, bo zračnica počila – in prav tako seveda v vesolju nimamo zračnic – ampak če se galaksije gibljejo prehitro, potem jih ta težnostni privlak ne more obdržati skupaj in se v bistvu začnejo gibati, ne ostanejo skupaj kot enota in prav zaradi tega sta oba ugotovila, da tako v galaksijah kot v jatah galaksij obstaja snov, ki oboje drži skupaj in prav to snov sta poimenovala temna snov.

Nova opazovanja prvotne domneve potrjujejo, seveda pa so zmožnosti današnjih teleskopov bistveno večje kot nekoč in raziskovanje lastnosti temne snovi je ena osrednjih tem današnjih raziskav vesolja. Se s tem odpirajo tudi bolj vznemirljive možnosti?

Seveda, novi  teleskopi in pospeševalniki prinašajo nove možnosti, te možnosti so trenutno Fermijev teleskop, ki meri, kako temna snov interagira sama s sabo in pa seveda veliki Hadronski pospeševalnik, ki nam bo, upajmo, pomagal izmeriti maso delcev temne snovi.

Trki jat galaksij, ki nam razkrijejo obstoj in lastnosti temne snovi, pomenijo, da je na kupu zelo veliko običajne in temne snovi. Zato so oddaljeni objekti, ki so za jato galaksij, videti popačeni. Je tak pojav gravitacijskega lečenja mogoče preprosto razumeti? Kaj novega se lahko pri tem naučimo?

Že ime pove, lečenje, ta pojav lahko razumemo z navadnim pojavom optike, ki smo ga vsi vajeni, torej navadne leče, samo tukaj je razlika, ker so leče, ki jih imamo, ki jih uporabljamo v vsakdanjem življenju, narejene tako, da slike ne popačijo. V bistvu mi ne želimo, da bi se slika popačila, mi samo želimo videti večje ali bolj ostro. V primeru gravitacijskega lečenja pa pride do popačenja in ta pojav je mogoče razumeti morda z malce drugačno lečo. Če vzamete kozarec vina in pogledate na primer svečo, ne skozi kozarec, ampak skozi podstavek kozarca, boste videli prav te popačitve, ki jih mi opazujemo v jatah galaksij. Pri tem se lahko ogromno naučimo, naučimo se, kako je snov razporejena v jatah galaksij in pa seveda tudi, kako interagira sama s seboj in tudi z navadno snovjo.

Narave temne snovi še ne poznamo, vseeno pa nova opazovanja njene lastnosti vedno bolj opredeljujejo. Je ta snov razporejena gladko ali grudasto, lahko o njej povemo že kaj konkretnega?

Torej snov je razporejena večinoma gladko, ampak ne tako gladko, kot je to na primer pri temni energiji. Še vedno je snov razporejena okoli galaksij, okoli jat galaksij. Kaj lahko povemo še bolj konkretnega? Verjetno je trenutno najbolj zanimivo, da lahko zmerimo lastnosti te temne snovi in kako interagira sama s seboj: pri tem smo namreč ugotovili, da ima temna snov zelo drugačne lastnosti kot snov, ki jo lahko merimo tu na Zemlji in zato odpira nova področja tako fizike osnovnih delcev kot tudi astronomije.

V čem je drugačna?

Drugačna je v tem, da delci ne interagirajo sami s seboj, to pomeni, da ne interagirajo s svetlobo in tudi ne povzročajo trkov sami s seboj. Predstavljajte si, če trčimo oblak plina z drugim oblakom plina, bodo delci interagirali, prišlo bo do trkov, plin se bo segrel, v primeru temne snovi pa se to ne zgodi.

Maruša, decembra odhajate na Havaje, kaj boste počeli tam?

Odhajam na nova opazovanja. Na enem največjih optičnih teleskopov na Havajih bomo opazovali prve galaksije, ki so nastale v vesolju. Gre za izjemno težka opazovanja in upam, da bomo dobili kakšne rezultate.

So tudi povezana z vašo temo, temno snovjo?

Povezana so mogoče ne čisto neposredno, ampak posredno. Uporabljamo lečenje, ki nam, ki ne samo nam omogoča, da vemo, kako je temna snov porazdeljena, ampak ker deluje tako kot navadne leče, nam svetlobo, ki prihaja iz oddaljene galaksije, ojača in s tem lahko opazujemo galaksije, ki jih drugače brez lečenja ne bi mogli.

Maruša Bradač, ki je zdaj profesorica na fizikalnem oddelku Kalifornijske univerze v Daviesu, rada poudarja svoje korenine. Letos bo predavala tudi študentom Fakultete za naravoslovje in matematiko v Mariboru. Meni, da je zelo pomemben dober študij, za katerega imajo naši študenti fizike tako v Ljubljani kot Mariboru prav vse pogoje in dobro podlago potem za nadaljnje raziskave in študij v tujini. Pred dobrim letom je poleg astrofizike začela poučevati predmet, ki govori o tem, kako stvari delujejo. Fiziko, ki se je številni študentje bojijo in se jim zdi nekaj abstraktnega, jim želi približati z razlagami iz vsakdanjega življenja, od fizike valov do smučanja in deskanja. Tako kot sta na primer smučanje ali pa ravnovesje sil na klancu fizikalno gledano v bistvu identična pojma, nas pa nedvomno bolj pritegne izraz smučanje. Veliko enostavnih stvari se je naučila tudi sama, na primer, kako odgovoriti na vprašanje, zakaj imajo snežinke šest in ne denimo osem krakov: ”Gre zato , da ima kristal vode oziroma ledu obliko heksagona in potem na tistih konicah začne snežinka rasti. Prav zaradi tega so vedno šestkrake. Torej, če boste videli osemkrako snežinko zdaj pred božičem, ko boste zavijali, vedite, da ta ni pravilna.


Frekvenca X

692 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Temna snov - prof. dr. Maruša Bradač

08.12.2011


Danes vemo, da je večina snovi v vesolju tako imenovana temna snov, raziskovanje njenih lastnosti pa je ena osrednjih tem vesoljskih raziskav.

Astronomi so za določanje lokacije temne snovi v jati uporabili pojav, ki se imenuje gravitacijsko lečenje. Ko svetlobni žarki potujejo skozi gravitacijsko polje v jati, se ukrivijo, pri čemer se podoba galaksije popači. Prav ta popačenja s precejšnjo verjetnostjo odkrivajo, kje je temna snov razporejena.

Pomagajmo si s prispodobo: predstavljamo si, da naročimo kapučino. Vidimo, da nam natakar ni prinesel prazne skodelice, po obnašanju pene lahko sklepamo na količino in nekatere lastnosti nevidne kave pod njo.

Vseeno pa bomo kavo videli šele, če bomo odpili peno, nato bomo spoznali tudi njen okus. Kot je večina kapučina kava, je tudi večina snovi v vesolju temne. V zadnjih letih smo v raziskavah in razumevanju temne snovi v primerjavi s kapučinom prišli do srebanja pene.

Mnoga vprašanja o vesolju ostajajo torej odprta in eno teh je prav gotovo sestava temne snovi. Pri tem je bil bistven prispevek naše gostje dr. Maruše Bradač.

V preteklosti nedvoumno pokazala, da temna snov za razliko od običajne snovi čuti le gravitacijski privlak. Ugotovila je, da se ob trku skupin galaksij njihova temna snov loči od običajne snovi, ki je izpostavljena tudi negravitacijskim silam. Ti rezultati zbujajo upanje, da bomo naravo temne snovi kmalu bolje razumeli.

Dr. Maruša Bradač, prve domneve o obstoju temne snovi so stare že 78 let. Lahko razložite, kaj je Fritza Zwickyja in Vero Rubin pripeljalo do tako nenavadnega sklepa?

Torej oba Fritz Zwicky in Vera Rubin sta merila hitrosti zvezd in galaksij v samih galaksijah in jatah galaksij in ko sta izmerila te hitrosti, sta ugotovila , da so hitrosti prevelike za to, kar smo vedeli takrat o galaksijah in jatah galaksij. Predstavljajte si to mogoče kot zračnico. Če je v zračnici prevelik tlak, bo zračnica počila – in prav tako seveda v vesolju nimamo zračnic – ampak če se galaksije gibljejo prehitro, potem jih ta težnostni privlak ne more obdržati skupaj in se v bistvu začnejo gibati, ne ostanejo skupaj kot enota in prav zaradi tega sta oba ugotovila, da tako v galaksijah kot v jatah galaksij obstaja snov, ki oboje drži skupaj in prav to snov sta poimenovala temna snov.

Nova opazovanja prvotne domneve potrjujejo, seveda pa so zmožnosti današnjih teleskopov bistveno večje kot nekoč in raziskovanje lastnosti temne snovi je ena osrednjih tem današnjih raziskav vesolja. Se s tem odpirajo tudi bolj vznemirljive možnosti?

Seveda, novi  teleskopi in pospeševalniki prinašajo nove možnosti, te možnosti so trenutno Fermijev teleskop, ki meri, kako temna snov interagira sama s sabo in pa seveda veliki Hadronski pospeševalnik, ki nam bo, upajmo, pomagal izmeriti maso delcev temne snovi.

Trki jat galaksij, ki nam razkrijejo obstoj in lastnosti temne snovi, pomenijo, da je na kupu zelo veliko običajne in temne snovi. Zato so oddaljeni objekti, ki so za jato galaksij, videti popačeni. Je tak pojav gravitacijskega lečenja mogoče preprosto razumeti? Kaj novega se lahko pri tem naučimo?

Že ime pove, lečenje, ta pojav lahko razumemo z navadnim pojavom optike, ki smo ga vsi vajeni, torej navadne leče, samo tukaj je razlika, ker so leče, ki jih imamo, ki jih uporabljamo v vsakdanjem življenju, narejene tako, da slike ne popačijo. V bistvu mi ne želimo, da bi se slika popačila, mi samo želimo videti večje ali bolj ostro. V primeru gravitacijskega lečenja pa pride do popačenja in ta pojav je mogoče razumeti morda z malce drugačno lečo. Če vzamete kozarec vina in pogledate na primer svečo, ne skozi kozarec, ampak skozi podstavek kozarca, boste videli prav te popačitve, ki jih mi opazujemo v jatah galaksij. Pri tem se lahko ogromno naučimo, naučimo se, kako je snov razporejena v jatah galaksij in pa seveda tudi, kako interagira sama s seboj in tudi z navadno snovjo.

Narave temne snovi še ne poznamo, vseeno pa nova opazovanja njene lastnosti vedno bolj opredeljujejo. Je ta snov razporejena gladko ali grudasto, lahko o njej povemo že kaj konkretnega?

Torej snov je razporejena večinoma gladko, ampak ne tako gladko, kot je to na primer pri temni energiji. Še vedno je snov razporejena okoli galaksij, okoli jat galaksij. Kaj lahko povemo še bolj konkretnega? Verjetno je trenutno najbolj zanimivo, da lahko zmerimo lastnosti te temne snovi in kako interagira sama s seboj: pri tem smo namreč ugotovili, da ima temna snov zelo drugačne lastnosti kot snov, ki jo lahko merimo tu na Zemlji in zato odpira nova področja tako fizike osnovnih delcev kot tudi astronomije.

V čem je drugačna?

Drugačna je v tem, da delci ne interagirajo sami s seboj, to pomeni, da ne interagirajo s svetlobo in tudi ne povzročajo trkov sami s seboj. Predstavljajte si, če trčimo oblak plina z drugim oblakom plina, bodo delci interagirali, prišlo bo do trkov, plin se bo segrel, v primeru temne snovi pa se to ne zgodi.

Maruša, decembra odhajate na Havaje, kaj boste počeli tam?

Odhajam na nova opazovanja. Na enem največjih optičnih teleskopov na Havajih bomo opazovali prve galaksije, ki so nastale v vesolju. Gre za izjemno težka opazovanja in upam, da bomo dobili kakšne rezultate.

So tudi povezana z vašo temo, temno snovjo?

Povezana so mogoče ne čisto neposredno, ampak posredno. Uporabljamo lečenje, ki nam, ki ne samo nam omogoča, da vemo, kako je temna snov porazdeljena, ampak ker deluje tako kot navadne leče, nam svetlobo, ki prihaja iz oddaljene galaksije, ojača in s tem lahko opazujemo galaksije, ki jih drugače brez lečenja ne bi mogli.

Maruša Bradač, ki je zdaj profesorica na fizikalnem oddelku Kalifornijske univerze v Daviesu, rada poudarja svoje korenine. Letos bo predavala tudi študentom Fakultete za naravoslovje in matematiko v Mariboru. Meni, da je zelo pomemben dober študij, za katerega imajo naši študenti fizike tako v Ljubljani kot Mariboru prav vse pogoje in dobro podlago potem za nadaljnje raziskave in študij v tujini. Pred dobrim letom je poleg astrofizike začela poučevati predmet, ki govori o tem, kako stvari delujejo. Fiziko, ki se je številni študentje bojijo in se jim zdi nekaj abstraktnega, jim želi približati z razlagami iz vsakdanjega življenja, od fizike valov do smučanja in deskanja. Tako kot sta na primer smučanje ali pa ravnovesje sil na klancu fizikalno gledano v bistvu identična pojma, nas pa nedvomno bolj pritegne izraz smučanje. Veliko enostavnih stvari se je naučila tudi sama, na primer, kako odgovoriti na vprašanje, zakaj imajo snežinke šest in ne denimo osem krakov: ”Gre zato , da ima kristal vode oziroma ledu obliko heksagona in potem na tistih konicah začne snežinka rasti. Prav zaradi tega so vedno šestkrake. Torej, če boste videli osemkrako snežinko zdaj pred božičem, ko boste zavijali, vedite, da ta ni pravilna.


04.01.2024

Nismo še videli, česa vsega je zmožno Sonce

Veter, nevihte, kresovi … Vsega tega ne poznamo samo na Zemlji in v njeni atmosferi, ampak tudi na Soncu. In tokrat bomo v Frekvenci X kot sonde opazovali njegovo celotno površje ter ugotavljali, kaj tamkajšnji pojavi pomenijo za življenje na Zemlji.


28.12.2023

Znansopotnika: Marina Dermastia in Tom Turk

V zadnji letošnji Frekvenci X gostimo dva znanstvenika, profesorja, komunikatorja znanosti, strokovna in tudi življenjska sopotnika, ki sta z biologijo in tudi med seboj povezana že več kot 40 let.


14.12.2023

Thomas Dietterich: Pionir strojnega učenja, ki obožuje flamenko

Thomas Dietterich je zaslužni profesor na javni univerzi v Oregonu in pionir strojnega učenja, ki na tem področju raziskuje že od leta 1977. Od nekdaj ga je zanimalo - kako se znanstveniki učijo o svetu? In v kontekstu računalnikov je to vprašanje strojnega učenja. Torej, kako se računalniki učijo o svetu?


06.12.2023

Sindrom prevaranta kot konstrukt sodobne družbe

Impostor syndrome v slovenščini najpogosteje imenujemo sindrom prevaranta, pojavlja se tudi poimenovanje sindrom vsiljivca. Gre za psihološki konstrukt, katerega značilnost so občutki dvomov o svoji lastni sposobnosti, kompetentnosti in inteligentnosti, čeprav objektivni dosežki kažejo nasprotno. Kakšni so znaki in občutki ob tem sindromu, kako je povezan s perfekcionizmom, kaj menijo psihologi in psihiatri, v kolikšni meri gre za konstrukt novodobne družbe kapitalizma in vplivnežev.


30.11.2023

Znanost v novembru: od občanske znanosti do projekta ERC

Mesec je naokoli in znova v zadnji novembrski epizodi Frekvence X zbiramo in izberemo nekaj najodmevnejših znanstvenih raziskav preteklega meseca. Tokrat se še posebej posvečamo prvemu nacionalnemu dnevu občanske znanosti, katere ambasadorka je dr. Zarja Muršič, povzamemo pa tudi nov pridobljeni projekt ERC, ki ga je tokrat dobil dr. Lev Vidmar z ljubljanske fakultete za matematiko in fiziko in Inštituta Jožef Stefan.


23.11.2023

Čemu tak pomp zaradi vodika?

Vodik je najmanjša, najlažja in najbolj razširjena molekula v vesolju. A v naravi ga samega po sebi skoraj ne najdemo, pridobiti ga je treba iz vode ali fosilnih goriv, kot so plin, premog in nafta. Potem ko se že lep čas uporablja za raketno gorivo, ga zdaj spodbujajo tudi kot čisto in varno alternativo nafti in plinu za ogrevanje in prevoz. Vodik je zadnja leta postal vroča politična tema, vlade po svetu, pa tudi Evropska unija, zanj namenjajo milijarde, toda ali je ves ta hrup res upravičen? Je res najboljša podnebna rešitev?


16.11.2023

Posnetek celotne okrogle mize Frekvence X: Kaj pa če se zmotijo znanstveniki?

Zgodovina znanosti je polna takšnih in drugačnih zmot, ki pa niso nujno slabe, temveč predstavljajo osnovo znanstvene metode in evolucijo znanosti. Tako so med okroglo mizo o zmotah v znanosti, ki je potekala na Inštitutu Jožef Stefan, izpostavili sodelujoči znanstveniki. Ob tem so poudarili, da je znanost še vedno nekaj najboljšega, kar imamo in k čemur se zatečemo, ko je kriza.


16.11.2023

Kaj pa če se zmotijo znanstveniki?

Zgodovina znanosti je polna takšnih in drugačnih zmot, ki pa niso nujno slabe, temveč predstavljajo osnovo znanstvene metode in evolucijo znanosti. Tako so med okroglo mizo o zmotah v znanosti, ki je potekala na Inštitutu Jožef Stefan, izpostavili sodelujoči znanstveniki. Ob tem so poudarili, da je znanost še vedno nekaj najboljšega, kar imamo in k čemur se zatečemo, ko je kriza.


09.11.2023

"Vse snovi so strupi; nobene ni, ki ne bi bila strup. Le odmerek loči strup od zdravila."

Tako je že v 16. stoletju dejal švicarski alkimist in zdravnik Paracelsus in z njegovo mislijo se v tokratni Frekvenci podajamo po poti strupov.


30.10.2023

Prah - od zlata v hišnem prahu do iskalcev kozmičnega prahu na strehah

Dvignimo malo prahu ... okoli prahu! Ste ta teden že obrisali prah in posesali? Morda bi morali … Zagotovo pa boste, ko vam na uho zaide najnovejša Frekvenca X, ki skupaj z geologom Klemnom Teranom spoznava hišni in cestni prah ter njune skrb vzbujajoče plati. V dneh, ko se sliši svetopisemski stavek 'Prah si in v prah se povrneš', pa bomo tudi na lovu za kozmičnim prahom.


26.10.2023

Znanost v oktobru: Od bisfenola A do misije na asteroid

Pregledi meseca so nazaj. Tokrat pregledujemo najopaznejša znanstvena odkritja oktobra. Nobelove nagrade smo že obdelali, v današnji oddaji se bomo posvetili Zoisovim nagradam, ki so nekakšne slovenske Nobelove nagrade. Gostimo Zoisovo nagrajenko za posebne dosežke na področju farmacevtske kemije in toksikologije dr. Lucijo Peterlin Mašič. S kolegi raziskuje nadomestke bisfenola A, spojine, ki jo uporabljajo za pridobitev plastike, BPA pa je problematičen, ker je motilec endokrinega sistema. Slišite lahko tudi nekaj drugih novic iz sveta znanosti.


19.10.2023

Vinska mušica - drobna junakinja, ki tlakuje pot genetiki

Postavite na mizo skledo sadja in v hipu bodo tam. Vzamejo se tako rekoč iz nič – majhne, rjave, z velikanskimi očmi. Te drobne in za mnoge tako moteče vinske mušice, ki jih je največ prav jeseni, imajo neverjetno znanstveno pot, podpisujejo se pod kar šest Nobelovih nagrad.


12.10.2023

Na misiji k Jupitrovim štirim karizmatičnim družicam

Jupiter je daleč največji planet v sončnem sistemu – več kot dvakrat večji od vseh drugih planetov skupaj! Kljub neznansko lepim umetelnim progam in lisam vladajo tam sila neprijazno okolje, ledeno mrzle temperature in pošastno sevanje. In zakaj nas ta tako neprijazen svet potem tako zanima? Zakaj k njegovim štirim družicam, Galilejevim lunam, pošiljamo novo evropsko sondo? Odgovor je preprost – voda in skrito življenje. Če bi bila naša Zemlja frnikola, bi bil Jupiter velik kot košarkarska žoga. K njemu se je aprila podala tudi evropska sonda Juice.


05.10.2023

Nobelove nagrade 2023: o mRNK cepivih, atosekundah in kvantnih pikah

Raziskave elektronov v atomih in molekulah, ki se odvijajo na nepredstavljivo kratkih časovnih skalah, znanstvena dognanja v ozadju mRNK cepiv, ki so pomembno zaznamovala pandemijo koronavirusa, in pa kvantne pike, polprevodniške nanostrukture, ki se jih uporablja na več različnih tehnoloških področjih. To so presežki, za katere bodo letos v Stockholmu med drugim podelili Nobelove nagrade. Kaj natanko so odkrili izpostavljeni znanstveniki, kako se te raziskave kažejo v praksi in kakšne so njihove življenjske zgodbe, analiziramo v Frekvenci X, ki si tokrat podaja roke z znanstveno redakcijo Prvega programa Radia Slovenija.


28.09.2023

Josef Ressel: Od vijaka do junaka

Josef Ressel je bil morda eden zadnjih res širokih mislecev. Po osnovni izobrazbi gozdar, je pomemben pečat pustil na zelo različnih področjih. Tehnike in inovacij se je loteval na način Leonarda Da Vincija. Najbolj je znan po izumu ladijskega vijaka, pomembna je njegova vloga pri pogozdovanju Krasa, bil je hidrotehnični strokovnjak. V prvem obdobju industrijske revolucije se je ukvarjal z novimi materiali in tehnologijami, zlasti pa ga je pritegnilo raziskovanje možnosti tehnoloških izboljšav v prometu in energetiki. Med zanimivejše ideje lahko štejemo tudi brezsmradno stranišče in lokomobil. Deloval je na Dolenjskem, na Krasu, v Trstu in Ljubljani, kjer je umrl leta 1857. Josef Ressel je bil češko-nemških korenin, v Ljubljani ima svojo cesto in spomenik, v Šentjerneju so mu posvetili metuljček in penino, načrtujejo tudi Resslov most. Kakšna je njegova zapuščina?


21.09.2023

Jožef Stefan: Eden največjih fizikov svojega časa

Kdo je bil Jožef Stefan? Čeprav se nam zdi, da ga vsi po malem poznamo, saj je po njem poimenovan največji znanstveni inštitut v Sloveniji, pa o njem v resnici vemo zelo malo. Znano je, da je bil otrok revnih in nepismenih staršev, s svojo nadarjenostjo in osredotočenostjo pa je kmalu dokazal, da je velik učenjak, postal je tudi eden vodilnih znanstvenikov v avstrijskem cesarstvu. Fizika je bila njegovo življenje - dobesedno, veliko dni je prespal kar na inštitutu, ki ga je vodil, ker je bil tako zelo predan delu. Poročil se je šele pri 56 letih in v sreči v dvoje je užival le kakšno leto, saj je kmalu po poroki umrl zaradi možganske kapi. Kdo je bil torej ta veliki fizik, edini znanstvenik slovenskega rodu, po katerem je poimenovan tudi fizikalni Stefan-Boltzmannov zakon?


14.09.2023

Alma Sodnik: Ženska, ki je stremela k iskanju čiste resnice

Njeno življenje ni bilo lahko. Izgubila je edinega otroka, podpirala v vojni poškodovanega moža in kariero gradila v moškem akademskem svetu ter v času najostrejše stalinizacije.


07.09.2023

Milan Vidmar: pionirski elektrotehnik, šahovski velemojster in legendarni profesor

Ogrevanje pred novo sezono Frekvence X začenjamo z zavojem v preteklost, k znanstvenikom, ki so se rodili ali delovali na slovenskih tleh in so splošni javnosti manj znani. Kot prvemu se bomo posvetili profesorju Milanu Vidmarju, ki je zaznamoval razvoj slovenske elektrotehnike in prva leta ljubljanske Univerze. O profesorju Vidmarju kot pionirskem elektrotehniku, vrhunskemu šahovskemu velemojstru in velikem borcu, ki je vplival na družbeni in gospodarski razvoj slovenskega ozemlja v svojem času, se je Jan Grilc pogovarjali s tremi gosti, ki jim je profesor Vidmar vsakemu po svoje zaznamoval življenjsko pot. Kdo je bil torej človek, ki je odločilno vplival na razvoj Univerze v zgodnjih letih, spoznal Nikolo Teslo in odigral legendarne partije z največjimi velemojstri šaha v svojem času? Gosti: - prof. dr. Rafael Cajhen, predavatelj, mentor in raziskovalec na Fakulteti za elektrotehniko - prof. dr. Maks Babuder, dolgoletni direktor Elektrotehniškega inštituta Milan Vidmar - prof. dr. Ivan Bratko, Fakulteta za računalništvo in informatiko, šahovski mojstrski kandidat


29.06.2023

Bolni - a le na dopustu?

Delaš, se trudiš, da boš pred dopustom storil vse, kar moraš, končno odideš iz pisarne, ugasneš luč, odzdraviš kolegom in v glavi snuješ načrte za dopust. Pakiraš, se voziš na morje, potem pa kar naenkrat bolečine v mišicah, smrkanje, morda celo vročina. Znano? Marsikomu verjetno res. Preddopustniška Frekvenca X se torej odpravlja na teren tako imenovane bolezni prostočasja. Zakaj se zgodi, da pogosto zbolimo ravno takrat, ko naj bi se imeli fino. Torej - na dopustu.


22.06.2023

Namakanje

Predzadnja Frekvenca X v letošnji sezoni se tik pred poletno vročino poglablja v namakalne sisteme. Prav ti so bili osnova, na kateri so med drugim zrasle antične civilizacije, od Kitajske do Egipta, hkrati pa so tudi danes marsikje osnova kmetijstva. V Grčiji, Italiji in Španiji na primer namakajo skoraj polovico kmetijskih površin, Slovenija pa le en odstotek. Kakšen je razlog, kako je z vodo in še marsikaj zanimivega, je o namakalnih sistemih izvedela Maja Ratej.


Stran 3 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov