Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Vremenske napovedi - prof. dr. Jože Rakovec

09.02.2012


Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.


Frekvenca X

680 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Vremenske napovedi - prof. dr. Jože Rakovec

09.02.2012


Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.


05.07.2019

Fizik Uroš Seljak med ameriško akademsko elito

V Ljubljani so se v teh dneh v okviru Svetovnega kongresa slovenskih fizikov zbrali naši fiziki in fizičarke, ki so se uveljavili na tujih univerzah in inštitutih. Med njimi slovenski strokovni javnosti predava tudi dr. Uroš Seljak, profesor fizike in sodirektor centra za astrofiziko na Univerzi Kalifornije v Berkleyju, ki je bil pred kratkim kot redni član sprejet v Nacionalno akademijo znanosti v Združenih državah Amerike. Več o tem, kaj mu pomeni včlanitev v najprestižnejšo ameriško znanstveno ustanovo in kako se v svojem profesionalnem življenju posveča iskanju temeljnih značilnosti vesolja s pomočjo kozmoloških opazovanj, pove v petek opoldne.


27.06.2019

Kaj v resnici sporoča serija Černobil

Ste kaj radioaktivni? Ali vas je nemara bolje vprašati, če ste kaj radiofobni? Frekvenca X si je ogledala HBO-jevo serijo Černóbil o največji jedrski nesreči v zgodovini, ki v javnosti sproža številne odzive. Po eni strani je najbolje ocenjena serija na IMDB, po drugi strani se nanjo zgrinjajo številni očitki o zavajanju s podatki. Kaj je res in kaj ne in kako je Černóbil znova potegnil na plano radiofobijo?


20.06.2019

Zelo žalostno bi bilo, če bi se izkazalo, da smo edina inteligentna vrsta v vesolju

Christine Jones Forman in Bill Forman sta zakonca in vrhunska ameriška strokovnjaka na področju rentgenske astronomije. Zaposlena na centru za astrofiziku Harvard Smithsonian sta se z odmevno črno luknjo v galaksiji M87 ukvarjala že dlje časa, ob tem pa več desetletij tako rekoč iz prve roke spremljala napredek na področju rentgenske astronomije. O majhnosti človeka v primerjavi z vesoljem, črnih luknjah, družinskem življenju z astronomijo, zlasti pa o žarkih X v astronomiji več rečemo ta četrtek točno opoldne.


10.06.2019

Frekvenca X na radijskem dvorišču: 50 let po velikem koraku za človeštvo

Siva, pusta, kraterjev polna, a vseeno navdihujoča – Luna. 50 let bo, odkar je Neil Armstrong kot prvi človek pustil svojo sled na našem edinem naravnem satelitu in na Zemljo sporočil tisto zgodovinsko: “To je majhen korak za človeka, a velik za človeštvo.” Pristanek na Luni je pomenil neverjeten napredek, naznanil je, da lahko človek s tehnologijo osvaja tudi prostrano vesolje, in odstrl novo raven tekmovanja med svetovnimi velesilami. Kakšen pečat je v družbi, politiki in znanosti pustil pristanek na Luni 20. julija 1969 in kako danes, petdeset let po tem zgodovinskem dogodku, Luna še preseneča, združuje, ločuje? Ob praznovanju rojstnega dneva Vala 202 smo pripravili javno snemanje Frekvence X na radijskem dvorišču, ki sta ga vodila Maja Stepančič in Jan Grilc. Gosti razprave: astrofizik dr. Tomaž Zwitter biokibernetik dr. Igor Mekjavič ameriški astronavt slovenskih korenin Ronald Šega astronom Andrej Guštin


06.06.2019

Človek 5/5: Samovozeča etika prihodnosti

Morda prihodnost ni še nikoli ponujala toliko nejasnosti in dilem kot danes. Lahko da nas bo umetna inteligenca nepovratno prehitela kot dirkalni avto. In vsak dan ponudila nekaj deset odkritij v rangu Nobelovih nagrad. Nekateri zagovarjajo scenarij, da bo umetna inteligenca celo prevzela nadzor nad človekom. V vsakem primeru bo treba s samovozečo prihodnostjo najti sožitje in jo pametno zavirati na mejnih območjih. A nobena tehnologija ni dobra ali slaba sama po sebi, pomembno je, kako jo uporabljamo ljudje, pomembne so družbene okoliščine, politične odločitve. Bi torej ob razvoju umetne inteligence potrebovali čim več ali čim manj regulacije, bi se morali vse večje prisotnosti umetne inteligence bati ali se je veseliti? Kje so realne in kje znanstvenofantastične meje? V epilogu serije Quo vadis, človek? o etiki razvoja in samovozečih dilemah človeka prihodnosti. Od Zemlje do vesolja. Od Rdeče kapice do robota. O tem, kako bi lahko tehnologije tudi pomagale pri reševanju okolja. Razmišljajo sogovorniki različnih strok. Avtorji: Luka Hvalc, Hana Hawlina, Jan Grilc


29.05.2019

Človek 4/5: Algoritmi demokracije

“Vojna je mir. Svoboda je suženjstvo. Nevednost je moč.” Tako je pred natanko 70 leti George Orwell zapisal v romanu 1984. Je imel prav? Možnost večje (tehnološke) izbire ne pomeni nujno svetlejše prihodnosti. Niti v osebnem niti v družbenem smislu. Veliko podatkovje, družabna omrežja in algoritmi spreminjajo demokracijo in na novo definirajo pravila igre. Ključno bo najti konsenz okrog uporabe umetne inteligence in ohranitve ideje demokracije. Hladna vojna je preteklost, družbe prihodnosti bodo poleg podnebnih sprememb ogrožale informacijske in trgovinske krize, morebitne zlorabe orožja, ki ga bo upravljala umetna inteligenca. Kako bo z varnostjo, bo država namesto vojakov imela polno “kasarno” vrhunskih hekerjev, strokovnjakov za algoritme in robotskih psihiatrov? Osrednja gosta 4. dela serije Quo vadis, človek?! sta filozofinja Renata Salecl in obramboslovec Uroš Svete. Avtorji: Luka Hvalc, Hana Hawlina in Jan Grilc


22.05.2019

Človek 3/5: Roboti kujemo bodočnost

Papež Frančišek je v Vatikanu zbral največje svetovne strokovnjake na posvetu o robotiki in umetni inteligenci. Humanoidni roboti zagotovo še lep čas ne bodo nadomestili katoliških duhovnikov in vernikov, medtem pa na Japonskem android Mindar že pomaga pri molitvah v budističnem templju. Dejstvo je, da tehnologija ne more popolnoma zamenjati človeškega dela, a bo umetna inteligenca spremenila tudi najbolj tradicionalne poklice, od zdravnika do duhovnika. Bo direktor podjetja za svojega namestnika kmalu imenoval robota? Kateri poklici bodo z razvojem umetne inteligence izginili, kateri se bodo spremenili? Skrajnosti razmerja človek-umetna inteligenca ilustrira tudi vstop robotov v intimne odnose, obstajajo celo že bordeli z robotskimi prostitutkami, za uporabo katerih je potrebno plačati zavarovanje. Roboti so pogosto bolj zaščiteni od ljudi, celo državljanstvo so jim že podelili. Na širšo družbo pa bo imel v bližnji prihodnosti še večji vpliv razvoj industrijske robotike, ki že predstavlja eno tretjino svetovnega trga in se največ uporablja v avtomobilski industriji. Največ robotov imajo v operativni rabi na Japonskem, Kitajskem in v ZDA. V Sloveniji je to razmerje 144 robotov na 10 tisoč zaposlenih, kar je precej nad evropskim povprečjem. Poleg tega smo tudi pri nas dobili tovarno industrijskih robotov, ki ima v Kočevju zmogljivost proizvodnje 10 tisoč robotov na leto. Japonska Yaskawa in slovenski Laibach sta združila moči pri posebnem umetniško-industrijskem projektu “Mi kujemo bodočnost.” Morda bodo Trbovlje celo prvo mesto v Sloveniji z robotskimi občani … Podrobno v 3. delu serije Quo vadis, človek?! Avtorja: Luka Hvalc in Hana Hawlina


15.05.2019

Človek 2/5: Okolje in hrana prihodnosti

Pridelava hrane zelo obremenjuje okolje. Analize kažejo, da povprečna letna poraba govedine samo enega Američana prispeva k onesnaženju s toplogrednimi plini toliko kot dobrih dva tisoč kilometrov vožnje z avtomobilom. Do leta 2050 se bo število prebivalstva na Zemlji povečalo na devet milijard ljudi, kar bo podvojilo povpraševanje po hrani. Je sploh mogoče, da nahranimo svet in hkrati ohranimo naš planet? Ob hitri rasti prebivalstva in prekomerni porabi naravnih virov, smo priča izraziti spremenljivosti podnebja. Vročinski valovi bodo v prihodnosti še pogostejši in daljši, več bo padavin, gladina morja se bo dvigovala. Škoda zaradi poplav, suš in vremenskih neurij v svetu strmo narašča in se bo še povečevala. Kaj in kako lahko spremenimo? Kakšne so prehrambene in okoljske alternative? Od avokadov na Instagramu, podnebnih štrajkov, okoljskih kiborgov, do žuželčjih burgerjev in laboratorijskega mesa. Quo vadis, človek?! Avtorja: Luka Hvalc in Hana Hawlina


03.05.2019

Človek 1/5: Selfi naše prihodnosti

Bo človek 2.0 živel v globalni tehno diktaturi ali se bo od urbanizacije vrnil nazaj k naravi? Raziskujemo, kam nas bodo pripeljali neznane poti umetne inteligence, kibernetike, vesoljskih tehnologij, pa spremenjeno prehranjevanje, omejitve okolja, nove oblike komunikacije … Kako bomo delovali kot družba, kakšni bodo odnosi med ljudmi s psihološkega in sociološkega vidika, kako bomo organizirani pravno in politično, bo tudi umetnost v domeni umetne inteligence? V uvodnem delu nove serije Frekvence X skušamo posneti selfi, no, pravzaprav skupinsko sliko naše prihodnosti, prihodnosti naših družin, prijateljev … Naše prihodnosti. Quo vadis, človek?! Avtorja: Luka Hvalc in Hana Hawlina


25.04.2019

Osupljiva prva fotografija črne luknje

Frekvenca X se ozira proti najbolj vroči temi v vesolju – proti črni luknji! Človeštvo si jo je pred kratkim prvič lahko ogledalo na fotografiji in podoba črnega kroga z ognjenim obročem je osupnila znanstvenike in laike. Fotografija črnega kroga z ognjenim obročem velja za najnatančnejšo fotografijo, kar jih je kdaj naredilo človeštvo, saj gre za takšno preciznost, kot če bi skušali številko na kovancu, ki bi ga nekdo držal v New Yorku, razbrati iz Ljubljane. Raziskovalci so potrebovali več let za povezovanje več deset teleskopov po planetu od Havajev, prek Španije do Antarktike in ob tem izkoristili še vrtenje Zemlje, da jim je naposled uspelo dobiti fotografijo črne luknje. Kakšno novo znanje nam prinaša ta dosežek in kakšni bodo prihodnji izzivi, z nami razmišljata astrofizika dr. Tomaž Zwitter, naš strokovni sodelavec z ljubljanske Fakultete za matematiko in fiziko, in dr. Roman Gold, eden od raziskovalcev pri projektu Event Horizon.


18.04.2019

Julie McEnery: Na NASI lahko izpolniš svoje znanstvene sanje

Julie McEnery je astrofizičarka, že sedemnajst let zaposlena pri NASI, pri kateri je raziskovanje res užitek. “Če imamo zamisel o nekem novem detektorju ali želimo raziskovati določeno črno luknjo na točno določen način, ti vedno nekdo omogoči, da to storiš. Tu lahko res izpolniš vse svoje znanstvene sanje.” Je projektna znanstvenica pri projektu satelit Fermi, ki ob pomoči gama svetlobe raziskuje naše vesolje. Med zvezdami se je znašla povsem po naključju, pravi. “Obiskala sem domače v Dublinu, avtobus na poti proti domu pelje mimo univerze, izstopila sem, si ogledala oddelek za fiziko in vprašala, ali je kakšna možnost, da bi tam študirala. Rekli so da in to je bilo to.” Več o vznemirljivosti opazovanja vesolja, pa tudi občasni dolgočasnosti njenega dela, o ženskah v tehnoloških poklicih in tudi pri NASI, pa o tem, zakaj sta Luna in Sonce enako svetla, če ju opazujemo z gama svetlobo, pove v prispevku. Z njo se je pogovarjala Maja Stepančič.


11.04.2019

Vse živo, epilog: Je človek res krona stvarstva?

V epilogu serije Vse živo danes potujemo od časov Lucy pa do Homo Futurisa, zanimalo nas bo tudi, kaj je tisto, kar ljudi res dela – ljudi. Ljudje smo dolgo veljali za krono stvarstva oziroma krono evolucijskega razvoja. Danes je težko najti lastnosti, po katerih smo posebni. Živali uporabljajo orodja, imajo jezik z dialekti, svojo kulturo … Kaj popolnoma človeškega nam je torej še ostalo? Maja Ratej se je v sklepu serije odpravila na Biotehniško fakulteto v Ljubljani, kjer je potekala tretja javna debata Frekvence X v tej sezoni. Z njo so bili še fiziolog Marko Kreft in antropologinja Petra Golja z Biotehniške fakultete, nevrolog Zvezdan Pirtošek z Nevrološke klinike v Ljubljani in strokovni sodelavec Frekvence X biolog Matjaž Gregorič iz Znanstveno-raziskovalnega centra SAZU.


04.04.2019

Vse živo 5/5: Skrivno življenje rastlin

Bi lahko rastline opisali kot inteligentne? Čeprav rastline na prvi pogled delujejo togo in dolgočasno, so zmožne marsičesa. Lahko se učijo, imajo spomin in so sposobne celo špekulirati, v zadnjih letih ugotavljajo strokovnjaki. V novi epizodi serije Vse živo Frekvence X na piedestal postavljamo skrivno življenje rastlin. Od klepetavih grahov, iznajdljivih plezalk do hitrostnih rekorderk mesojedk. Med drugim nas bo zaneslo tudi v gozd, kjer se v tleh razprostira ogromen širokopasovni gozdni internet, po katerem rastline že milijarde let delijo dobrine, se opozarjajo na nevarnosti in se vedejo celo altruistično. Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


28.03.2019

Vse živo 4/5: Tango za dva pajka

V novi epizodi serije Vse živo bomo še prav posebno živalski. Odpravljamo se namreč v svet neverjetno pestrih paritvenih sistemov, ki jih poznajo živali. Od levjih krdel, prešuštniških ptičev, pretkanih škržatov, od ljubezni slepih bahavih petelinov, pajkovk kanibalk pa do ušes zaljubljenih voluharjev, med – recimo jim – napetimi četrtinami pa postrežemo še s prav posebno pajčjo ljubezensko afero. Kako živali izbirajo partnerje in kako močno jih zaznamuje spolni konflikt? Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


21.03.2019

Frekvenca X: 10 let rad(i)ovednosti

S tremi urami živega programa smo 19. marca 2019 zaznamovali 10-letnico oddaje in podkasta Frekvenca X. Strnili bomo najzanimivejše utrinke: poslušalke in poslušalci so v živo zastavljali poljudnoznanstvena vprašanja, oglasili so se celo šolarji iz ene izmed učilnic, poklicali smo naše raziskovalce na šest celin, reševali smo izziv o mravljah in slonih, v interpretaciji Ivana Lotriča in Primoža Fleischmana ustvarili Zgodbo Zemlje za glas in klavir. Osrednja gostja Frekvence X je bila legendarna primatologinja in preučevalka šimpanzov Jane Goodall.


19.03.2019

Intervju z Jane Goodall

Kmalu bo natanko 50 let, odkar je Jane Goodall odkrila, da šimpanzi uporabljajo orodje, imajo čustva, svojo osebnost. Znamenita britanska primatologinja bo svoje ugotovitve in izkušnje delila posebej za slavnostno Frekvenco X. Tudi o tem, kako je ime dobila po Tarzanovi Jane in kako je bil kuža Rusty njen največji življenjski učitelj. Kljub 85 letom je še vedno vseskozi na poti, morda kmalu znova obišče tudi Slovenijo. Avtorja: Maja Ratej in Matej Praprotnik


19.03.2019

Delo v mutlikulturnem okolju razširja obzorja

Frekvenca X ne ostaja samo na domačih tleh, veliko kličemo tudi v tujino, dobesedno na vse celine. In tako smo si ob našem desetem rojstnem dnevu rekli: “Kaj ko bi to ponovili, malo bolj zgoščeno, da preverimo, če je Zemlja res okrogla.” In tule je dokaz. Na celine sveta smo poklicali šest naših znanstvenikov. Sogovorniki: Nace Kranjc - London, Velika Britanija, Maruša Žerjal - Canberra, Avstralija, Liza Debevec - Adis Abeba, Etiopija, Jure Dobnikar - Peking, Kitajska, Tina Šantl Temkiv - Antarktika, Ajasja Ljubetič - Seattle, ZDA


14.03.2019

Vse živo 3: Neverjetni mikrobi

So pravi gospodar in stric v ozadju našega planeta mikrobi? Več milijard let so imeli Zemljo sami zase in poganjajo vse ključne procese na Zemlji, celo padavine. Poseljujejo najbolj ekstremne dele planeta, živijo v nas, in to v velikanskih številkah, po eni od teorij naj bi bili prav mikrobi prišleki z drugega planeta. Nič na njih ni mikro, le ime. V tretji epizodi serije Vse živo se s sogovorniki dotikamo nekaterih trenutno najbolj vročih področij raziskovanja mikroorganizmov. Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


07.03.2019

Vse živo 2: Rajskega vrta ni več

Na Zemlji poteka šesto veliko izumiranje vrst, ki smo ga povzročili sami. Na planetu naj bi bilo ogroženih 70 odstotkov vseh vrst, v naslednjih 30 letih jih bo izumrla petina. Vsako minuto posekamo, zažgemo ali kako drugače uničimo okrog sto hektarov gozda, prav tako smo že izgubili tri četrtine genetske raznolikosti kulturnih rastlin, ki smo jih sicer nekoč sami vzgojili. Rajskega vrta ni več, opozarjata avtorja druge epizode serije Vse živo dr. Matjaž Gregorič in Maja Ratej.


28.02.2019

Vse živo 1/5: V iskanju zgodbe življenja

Kako staro je življenje na Zemlji? Kdaj se je zgodil tisti trenutek, ko je kemija milijarde let nazaj sredi neprijazne pustinje našega planeta prešla v biologijo? V novi seriji Frekvence X »Vse živo« bomo na sledi življenju na planetu … Odstirali bomo zgodbo o neverjetni raznolikosti, boju, vztrajnosti in fantastični ustvarjalnosti narave okrog nas. In kje v vsem tem je človek, je človek res krona stvarstva?


Stran 12 od 34
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov