Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Vremenske napovedi - prof. dr. Jože Rakovec

09.02.2012


Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.


Frekvenca X

692 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Vremenske napovedi - prof. dr. Jože Rakovec

09.02.2012


Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.


03.12.2020

Misija Gaia: Naša galaksija dobiva rokovski prizvok

Misija Gaia Evropske vesoljske agencija z osupljivo natačnostjo meri velikost naše galaksije in vsega vesolja. Aktualni podatki kažejo na veliko razburkanost in nihanja v naši galaksiji, prof. dr. Tomaž Zwitter pravi, da dogajanje dobiva rokovski prizvok. Komentiramo objavo tretje različice kataloga astronomskih meritev misije Gaia, ki skupaj obsega kar 1,8 milijarde zvezd, njena natančnost pa je primerljiva z merjenjem debeline človeškega lasu čez Atlantik. Za projekt skrbi 500 znanstvenikov, pri obdelavi podatkov imajo pomembno vlogo tudi slovenski strokovnjaki.


26.11.2020

Cepiva in mi: Tekma, kakršne ne pomnimo

Na potovanju po svetu cepiv se bomo v zadnji epizodi serije Cepiva in mi ustavili pri aktualni tekmi, kdo bo prvi priskrbel varno in dovolj učinkovito cepivo proti covidu-19. Evropska komisija je pogodbo o dobavi za zdaj podpisala s šestimi proizvajalci, po najbolj optimističnem scenariju pa naj bi cepiva na evropski trg prišla januarja. Do njih bodo najprej upravičene najranljivejše družbene skupine, o vsem povezanim s cepivom pa bo na voljo tudi namenska aplikacija. V oddaji spoznavamo tudi, kakšen je postopek produkcije cepiva v tovarni in kako cepivo pristojni regulatorni organi sploh registrirajo. Preverili smo tudi, kako bo z njegovo pravično globalno redistribucijo in zagotavljanjem ustreznega transporta, pomudili pa smo se tudi na borzah, kjer so dobre novice o aktualnem cepivu močno prevetrile negativno razpoloženje.


19.11.2020

Cepiva in mi: Fascinantno potovanje do sodobnih cepiv

Potem ko smo v prvem delu miniserije 'Cepiva in mi' cepljenje spoznavali iz zgodovinske perspektive, se bomo v drugem delu spustili na raven molekularne biologije. Cepiva so v zadnjih desetletjih tako izpopolnili, da vse bolje posnemajo delovanje imunskega sistema. O tem pričajo nove vrste cepiv, do katerih se lahko dokopljemo bliskovito; včasih so za to potrebovali desetletja. Kako delujejo cepiva, iz časa so in kako jih dandanes lahko razvijejo tako hitro? Odgovore bomo iskali v novi Frekvenci X.


12.11.2020

Cepiva in mi: Poldruga milijarda življenj!

V tednu, ko so smo dobili prve oprijemljive rezultate o učinkovitosti kandidata za cepivo proti covidu-19, se na Valu 202 obširneje podajamo v svet cepiv. Človek zelo osnovne oblike cepljenja uporablja že več kot tisočletje, raketni pospešek pa je prinesel razvoj mikrobiologije. Cepljenje je v zadnjih 200 letih rešilo do milijardo in pol življenj, v zadnjih letih pa tehnologija razvoja cepiv dobiva še dodaten pospešek. Potem ko so včasih na cepivo čakali po več desetletij, so danes za to potrebni le meseci. O razvoju cepiv, odnosu človeka do cepljenja in o tem, kako cepiva pravzaprav nastanejo, bomo na Valu govorili v okviru posebne miniserije Frekvence X. Cepiva in mi – v vseh preostalih novembrskih četrtkih ob 12h.


05.11.2020

Čudežni svet znanstvene nomenklature

Dragi Homo sapiensi! Potem ko zalijete svoje Ficuse rubiginose in Monstere deliciose, si s skupaj s svojima Canisom familiarisom pri nogah in s Felisom catusom v naročju privoščite novo Frekvenco X. Ta se razgleduje po svetu znanstvene nomenklature živih bitij; in čeprav je ta izključno znanstven, je velikokrat zelo čudežen.


29.10.2020

Govoriti o lažno pozitivnih testih je, enostavno rečeno, zmotno

Obiskali smo ljubljansko izpostavo Nacionalnega laboratorija za zdravje, okolje in hrano in v praksi preverili, kako poteka ugotavljanje novega koronavirusa po metodi PCR.


22.10.2020

Z globalnimi navigacijskimi satelitskimi sistemi lahko sledimo celo velikim hroščem

Ko se vprašamo: Kje smo in kam gremo?, je pri večini najpogostejša rešitev - gumb za lokacijo na pametnem telefonu. Na globalne navigacijske satelitske sisteme se pogosto popolnoma zanašamo, da nas bodo pripeljali do prave lokacije na centimeter natančno. Hkrati ti sistemi delujejo v ozadju mnogih tehnologij, mnoge raziskave v znanosti pa bi bile brez njih popolnoma nemogoče. V Frekvenci X razmišljamo o tem, kakšna tehnologija poganja sisteme, ki jim brez razmisleka pustimo, da nas vsakodnevno vodijo po svetu, kako je v osnovi vojaška tehnologija dobila tako širok nabor civilnih rab in kakšno znanje o navadah živali in delovanju ekosistemov smo pridobili z njihovo pomočjo. Spoznamo tudi, kako so globalni satelitski navigacijski sistemi popisali izjemno živalsko avanturo z volkom v glavni vlogi. Gosta: dr. Oskar Sterle, Fakulteta za gradbeništvo in geodezijo dr. Hubert Potočnik, Katedra za ekologijo Biotehniške fakultete v Ljubljani


15.10.2020

Le eden na 10 000 ljudi ima absolutni posluh

V času, ko bi se morali predvsem bolj in bolje poslušati, znanstveno uho Vala 202 usmerjamo k posluhu. V Frekvenci X bomo danes raziskovali razvoj posluha pri ljudeh in značilnosti absolutnega posluha. Le eden na 10 000 ima absolutni posluh, mi smo našli kar štiri.


08.10.2020

Detektivka hepatitisa C, misterij črnih lukenj in genetske škarje

Nobelove nagrade s področja naravoslovja odkriteljem črnih lukenj, pionirjem najuspešnejšega protivirusnega zdravljenja v zgodovini in izumiteljicama genetskih škarij. V tednu Nobelovih nagrad ob pomoči slovenskih strokovnjakov analiziramo letošnje dobitnike s področja medicine, fizike in kemije. Sodelujejo prof. dr. Mojca Matičič, prof. dr. Andreja Gomboc in prof. dr. Romana Jerala.


01.10.2020

Čipi so fascinantna stvaritev človeštva

Nekateri pravijo, da so verjetno najbolj zapletena stvaritev človeštva. Na nekaj kvadratnih centimetrih skrivajo več deset milijard tranzistorjev, ki jih lahko vidimo le pod elektronskim mikroskopom. Tiktakajo s frekvencami, večjimi od štirih gigahercev, torej v sekundi izvedejo štiri milijarde ciklov. Toda po drugi strani imajo čipi sila preprost izvor. Svojo pot začnejo kot pesek.


24.09.2020

Zora Janžekovič – kirurginja svetovne slave, ki je v Sloveniji skoraj neznana

Bila so 60. leta prejšnjega stoletja, ko je ena redkih kirurginj v mariborski bolnišnici zanetila svetovno revolucijo na področju opeklinske kirurgije. V težnji, da svojim pacientom kar se da pomaga, je iznašla povsem novo metodo zdravljenja globokih opeklinskih ran, ki jo je v zgolj nekaj letih kljub nejeveri nekaterih prevzel ves svet. Hipoma so jo povzeli tako rekoč vsi učbeniki, iz katerih so svoje znanje črpale prihodnje generacije opeklinskih kirurgov, sama pa se je zavihtela na lestvico 25 najvplivnejših zdravnikov 20. stoletja in 50 najvplivnejših zdravnikov vseh časov. A vendarle jo v Sloveniji poznajo le redki.


17.09.2020

Konec vesolja

Ukvarjamo se z vprašanjem, ki mnoge straši, vsekakor pa buri domišljijo: Kakšen bo konec vesolja? Bo vesolje samo sebe raztrgalo na kosce v spektakularni apokalipsi ali se bo morda zaradi neskončnega raztezanja počasi izpraznilo in potemnelo? Dr. Katie Mack je kozmologinja, ki se s temi vprašanji ukvarja vsakodnevno, odgovore nanje pa zna ubesediti na spreten, iskriv in včasih celo šaljiv način. O velikem “koncu vseh koncev” ter o podatkih, ki nam omogočajo njegovo napovedovanje, v Frekvenci X govorimo z avtorico knjige Konec vsega (v jeziku astrofizike), ki je hkrati ena najbolj priljubljenih svetovnih razlagalk znanosti na družbenih omrežjih, in dr. Tomažem Zwittrom z ljubljanske Fakultete za matematiko in fiziko. V drugem delu podkasta pa osvetlimo še sveže odkritje fosfina na Veneri, ki bi se morda lahko izkazalo za prelomno, zaenkrat pa odpira mnogo novih vprašanj.


10.09.2020

Strokovnjake skrbi dolgotrajno okrevanje po okužbi s koronavirusom

Mineva 200 dni, odkar je novi koronavirus dobil svoje uradno ime, z njim pa smo tedaj poimenovali tudi bolezen, ki jo povzroča. Z virusom Sars-CoV-2 se je doslej okužilo več kot 28 milijonov ljudi po svetu, zaradi posledic bolezni covid-19 pa je umrlo že več 900 000 obolelih. Kaj vse so strokovnjaki v tem času že razvozlali o virusu in zakaj je še vedno veliko vprašanj zlasti v zvezi z dolgotrajnim okrevanjem pri številnih bolnikih, raziskujemo ta četrtekna Valu 202 v oddaji Frekvenca X. Pogledali pa bomo tudi na južno poloblo, kjer ravnokar končujejo zimsko sezono prehladnih obolenj. Presenetljivo: Avstralija in Nova Zelandija prvič po dolgem času skoraj ne poročata o primerih gripe.


03.09.2020

Novodobna satelitska soseska

Skupaj z našima satelitoma je izstreljena tudi nova sezona Frekvence X. Kakšne naloge danes v orbiti opravljajo sateliti, zakaj so čedalje manjši, kdo ima dostop do informacij, ki jih pošiljajo na Zemljo in zakaj nihče od njih ne pomete smeti pred svojim kozmičnim pragom? Prvo epizodo nove sezone je pripravil Maj Valerij.


24.06.2020

Slovenska znanost med vožnjo vzvratno in potjo proti boljšemu

Republika Slovenija vstopa v 30. leto svojega obstoja. Ob tem želimo premotriti tudi položaj znanosti v njej. V premislek o zrelosti države moramo vključiti tudi položaj znanosti v njej, saj je znanost pomemben indikator razmer v državi. Zakaj je znanost pomembna za razvoj in obstoj države? Se naša država zaveda svoje odgovornosti do znanosti? V čem se to najbolj odraža? Znanost ne igra pomembne vloge le pri spoprijemanju s posledicami epidemij in drugih zdravstvenih problemov, tu so tudi podnebne spremembe, problematika varnosti našega okolja (zraka,vode, tal), problematika terorizma, vse večje vloge umetne inteligence, moči človeka, da usmerja svoj genetski ustroj … Vse te grožnje lahko vržejo družbo s tečajev. Na katerih tovrstnih področjih je bila slovenska znanost v preteklih treh desetletjih najbolj glasna, na kaj je družbo najbolj opozarjala? So se slovenski znanstveniki v preteklih 30 letih pri nas dovolj javno angažirali? Sogovornika: dr. Oto Luthar, direktor ZRC SAZU in dr. Matjaž Kuntner, direktor Nacionalnega inštituta za biologijo Avtorja: Maja Ratej in Luka Hvalc


18.06.2020

Internet za vse

Globalni satelitski projekti ali napredna povezovalna zakonodaja? V Frekvenci X se sprašujemo, kako bi lahko do interneta dostopali vsi in kakšne koristi bi to prineslo našim družbam


11.06.2020

Svetloba je tako osvajalno orodje kresničk, kot tudi opozorilni znak

V odrasli dobi živijo največ teden, dva, sicer pa največ časa svojega življenja preživijo v stanju ličinke. Kresničke so tiste vrste živali, ki nas v trenutku, ko jih omenimo, popeljejo v čas toplih poletnih večerov. Spominjamo se morda svojega brezskrbnega otroštva in čudenja, ko so nas prav graciozno obletavale. Kresničke spodbujajo našo domišljijo, ob njih si postavljamo vprašanja o samem delovanju narave, med drugim pa so tudi navdih za umetnost in seveda znanstvenike, ki se v svojih raziskavah lotevajo vprašanj o tem, zakaj pravzaprav svetijo, kako jih v sodobnem času ogrožajo svetlobna onesnaženost in onesnaženost okolja, industrializacija in podnebne spremembe ter zakaj so za številne kresničke - ki so mimogrede hrošči - neizčrpen vir navdiha? Sogovornika sta dr. Marc Branham, entomolog z Univerze na Floridi, ki je svojo raziskovalno pot posvetil kresničkam, in biolog dr. Raphael DeCock z Univerze v Antwerpu.


04.06.2020

Mesta prihodnosti: Po epidemiji

Mesta prihodnosti se vračajo! Kaj vse se je v zadnjih treh mesecih zgodilo mestom, ki so bila med pandemijo središčne točke prenašanja okužb in hkrati prizorišča nekaterih najbolj dramatičnih prizorov, ki se bodo zapisali v kolektivno zavest človeštva? Z domačimi in tujimi strokovnjaki razmišljamo o tem, kako je izkušnja epidemije spremenila naše dojemanje javnih prostorov in infrastrukture, kako bomo preoblikovali prometne navade, kaj bo za mesta pomenil zaton turizma in kakšen bo nov odnos med mesti in podeželjem. Avtorja: Jan Grilc in dr. Dan Podjed (ZRC SAZU) Gosti: Steven Pedigo (Univerza Lyndona Johnsona, Teksas); Nicola Ussardi (Assemblea Sociale per la Casa, Benetke); dr. Maja Simoneti (Inštitut IPoP)


28.05.2020

V času pandemije cvetijo tudi teorije zarot

Kdor koli razume znanost, ve, da bo ta za rešitev problema predlagala različne ukrepe. V Ko je vlada Južnoafriške republike zanikala znanstvena dognanja o virusu HIV, je po nekaterih ocenah umrlo več kot 300.000 ljudi. Profesor Chris French raziskuje nenavadne pojave in teorije zarote.


21.05.2020

Fascinantne trave

Kdor ima v teh dneh vsaj malo odprte oči, ga ni mogel spregledati. Na meniju pomladi se je po prvem hodu s cvetočimi drevesi zdaj pred nami znašla rapsodija travniškega okrasja. Danes se bomo posvetili predvsem tistim, ki na tem majskem travniškem gobelinu niso v prvem planu, a so ključne, zelo stare in za človeka tekom vse naše civilizacije izjemno pomembne. To so trave. Kot boste slišali, so trave z nami povezane prek žit (ja, žita izhajajo prav iz trav), dotaknili pa se bomo tudi alergij, ki nam jih povzroča cvetni prah trav, ter tega, kako je vzgoja trav v obliki žit povzročila prave podnebne spremembe. Sogovornica Maje Ratej bo znanstvena svetnica na Nacionalnem inštitutu za biologijo in profesorica na Univerzi v Ljubljani in Mednarodni podiplomski šoli Jožef Stefan dr. Marina Dermastia.


Stran 10 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov