Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Temna energija - dr. Sean Carroll

30.05.2013


Je največja skrivnost v vesolju ter največja zadrega in glavobol današnjih fizikov. Je najmočnejša sila v vesolju, ki bo določila tudi njegov konec, vendar nihče ne ve, kaj je. Verjetno si marsikdo misli, da je dandanes, v svetu močno napredne tehnologije in znanosti, večji del narave že zdavnaj pojasnjen in odkritih že večina naravnih zakonov.

Ampak resnična slika je daleč od tega in znanstveniki zdaj dobesedno ne vedo, kaj predstavlja večino, ali natančneje, 70 odstotkov našega vesolja.

Vse, kar vedo o tem delu našega kozmosa, je to, da je nekakšna sila, ki vesolje vleče narazen. Temna energija je torej nadvse primerno ime za to skrivnostno entiteto. Vse se je začelo, ko sta se mednarodni skupini raziskovalcev pred približno trinajstimi leti lotili bolj ali manj rutinske raziskave.

Znanstveniki so namreč skušali narediti zelo natančno meritev ene temeljnih fizikalno-astronomskih konstant, njihova nepompozna študija pa je na koncu postavila na glavo celotno moderno kozmologijo in fizikom zastavila hudo zapleteno vprašanje. Astronomi Adam Riess, Brian Schmidt in Saul Perlmutter, ki so leta 2011 za to svoje delo prejeli Nobelovo nagrado, so namreč želeli določiti, s kakšno hitrostjo se naše vesolje širi, pri tem pa so merili svetlobo posebne vrste zvezd, znane kot supernova.

“The good news is that we know what 5 % of the universe is made of!” Interview with @seanmcarroll 202.tw/170tYtd #FX

— Matej Praprotnik (@praprotnix) May 28, 2013

Ko so preučili rezultate meritev, so pretreseni ugotovili, da se, v nasprotju z dotedanjim prepričanjem, vesolje širi pospešeno. To pa je pomenilo, da mora v vesolju obstajati neka neznana odbojna elementarna sila, ki je prej še nihče ni opazil. Nadaljnji izračuni vsote vse mase in energije v vesolju so pokazali, da je ta energija kar 70 odstotkov vsega kozmosa. Naše vesolje torej obvladuje skrivnostna temna sila in znanstveniki že več kot deset let na vse pretege razglabljajo, kaj bi le-ta lahko bila, a do zdaj jim še ni uspelo najti nobene res prepričljive razlage. Najprej so pomislili na to, da sam prazen prostor med zvezdami oziroma vakuum ustvarja to silo.

Čeprav se to sliši zelo nenavadno, pa teorija kvantne mehanike pravi, da v vakuumu iz nič nastajajo in izginjajo osnovni delci materije, zato pa vakuum v resnici ni popolnoma prazen, ampak ima določeno energijo. Ampak ko so fiziki izračunali energijo vakuuma in jo primerjali z močjo temne energije, so ugotovili, da njihovi teoretični izračuni vakuumu pripisujejo daleč previsoko energijo, kar 120 velikostnih redov preveliko. Za to neujemanje pravijo, da je najslabša teoretična napoved v zgodovini fizike, in so mu nadeli vzdevek vakuumska katastrofa.

Druga mogoča razlaga temne energije pa pravi, da v vesolju obstaja še eno, peto temeljno energijsko polje, podobno kot denimo elektromagnetno. Tudi s to razlago imajo fiziki celo kopico težav in je nikakor ne morejo uskladiti z eksperimentalnimi meritvami temne energije. Za marsikoga je temna energija zato največji izziv moderne fizike, za katerega kaže, da se spretno izmika vsakemu poskusu razlage. Raziskovalci zato dostikrat posežejo tudi po eksotičnih razlagah, ki se včasih zdijo kot obupni poskusi izhoda iz labirinta.

Tako so med drugim ugotavljali, da je temna energija posledica orjaških magnetnih polj, ki vladajo nad vesoljem, ali pa da gravitacija na velikih razdaljah deluje odbojno. Nekateri celo menijo, da je mogoče naš del vesolja v gigantski praznini sicer bolj poseljenega kozmosa, to pa je povsem v nasprotju s sedanjimi prepričanji v fiziki. Od narave temne energije je odvisna tudi usoda našega vesolja. Če bo njena moč v prihodnosti ostala enaka, se bo čez milijone let vesolje tako razširilo, da bo naša galaksija ostala v tako rekoč neskončni praznini, povsem izolirana od preostanka vesolja. Če bo moč temne energije narastla, pa vesolje čaka konec v tako imenovanem »velikem trganju«, ko bo ta energija narazen raztrgala vse, od galaksij, zvezd, planetov in celo samih atomov.

Mogoče pa se bo njena moč začela zmanjševati in se bo vesolje začelo sesedati vase. A ker temne energije ne poznamo dovolj dobro, fiziki preprosto ne vedo, kateri izmed teh scenarijev je pravilen. Ena izmed težav pri temni energiji je ta, da je znanstveniki ne morejo neposredno meriti oziroma detektirati, ampak lahko samo opazujejo njene učinke v vesolju. Zato so oči astronomov napeto obrnjene v nebo in v prihodnosti se bo začelo nekaj obsežnih raziskav, s katerimi bodo znanstveniki poskušali prodreti globlje v skrivnosti temne energije. Zdaj pa smo tam, ko nas temna energija še uči ponižnosti v našem neznanju in nepoznavanju še vedno skrivnostnega vesolja.

————–

INTERVJU: Dr. Sean Carroll, Kalifornijski inštitut za tehnologijo (Caltech). Intervju so pomagali prevajati poslušalci oddaje Frekvenca X. Oglejte si tudi potek prevajanja in transkript pogovora v angleščini.

Sliši se skoraj neverjetno, da za 70 odstotkov našega vesolja ne vemo, kaj je. Ali to za fizike ne pomeni vsaj majhne zadrege?

Veste, menim, da ne bi smelo biti zadrege. Kar malo smo razvajeni od znanstvenega napredka. Dobra novica je, da za 5 odstotkov vesolja vemo, iz česa je sestavljeno. Kar dobro ga razumemo in če za hip pomislite, s tem govorimo o vsem vesolju. Pred 100 leti nismo ničesar vedeli o širjenju vesolja, o temni snovi, temni energiji in podobnem. Mislim, da imamo kar nekaj razlogov, da smo ponosni na svoj napredek.

Koliko smo prepričani, da temna energija res obstaja? Je res izključeno, da bi bilo to samo iluzija zaradi kakšne napake pri astronomskih meritvah?

Dve možnosti sta za to, da temna energija ne obstaja. Prva je ta, da gre za napako pri opazovanju, in ta je bolj ali manj izključena. Imamo namreč več kot le en dokaz o obstoju temne energije. Tu je opazovanje supernov, razporejenosti galaksij in sevanja ozadja iz velikega poka. Vse daje popolnoma enak rezultat. Nismo pa čisto prepričani, da vse to najbolje razloži temna energija. Za te podatke bi bila možna tudi drugačna razlaga, na primer spremenjeno delovanje gravitacije na kozmoloških razdaljah. Ta hip je temna energija brez dvoma najboljša kandidatka za razlago, raziskujemo pa tudi druge možnosti.

Zakaj je izvor temne energije tako težko pojasniti? Človek bi si predstavljal, da bodo fiziki v teh desetih letih že zdavnaj našli razlago za ta pojav. Kako blizu odgovora smo danes?

Treba je poudariti, da že imamo zelo dobro razlago oziroma teorijo o tem, kaj bi lahko bila temna energija. Imenuje se kozmološka konstanta oziroma energija vakuuma. Vpeljal jo je že Einstein leta 1917. Težava z energijo vakuuma oziroma kozmološko konstanto ni to, da smo presenečeni, ker obstaja. Presenečeni smo, ker je tako šibka. Energija vakuuma je energija praznega prostora in ko se fiziki usedejo, da bi teoretično ocenili, koliko energije bi moralo obstajati v praznem prostoru, dobijo velikansko številko. Skrivnost je, zakaj je v naravi številka tako majhna. A dokler je tako majhna, se popolnoma ujema s podatki. Smo pa zelo pazljivi, da tega ne razumemo kot dokončno. Samo to, da imamo teorijo, ki deluje, še ne pomeni nujno, da je prava. Zato preučujemo vse možnosti, na katere lahko pomislimo.

Kaj pa vi osebno mislite, da je temna energija?

Menim, da se bo na koncu energija vakuuma izkazala za pravo razlago. Gre za to, da če vzamemo majhno točko v vesolju in jo popolnoma izpraznimo, tako da v njej ni več nobene materije, nobenega sevanja, nobene temne snovi ali česar koli drugega, dobimo popolnoma prazno območje. Pri tem se postavlja vprašanje: koliko energije je v tem delčku vesolja? Človek bi pomislil, da je odgovor nič − ker na tem območju ni ničesar, je preprosto prazen. A po Einsteinovi relativnostni teoriji, ki določa delovanje gravitacije v vesolju, obstaja število oziroma naravna konstanta vesolja, ki pove, koliko energije ima prazen prostor. Vse kaže, da nam je to število uspelo izmeriti. To vemo iz enega samega razloga: deluje namreč na prostor – čas. Vpliva na raztezanje vesolja in njegovo pospeševanje, kot smo odkrili s teleskopi.

Si upate napovedati, kdaj bodo znanstveniki končno pojasnili to skrivnostno silo?

V tem trenutku skušamo ločiti med različnimi možnimi teorijami. Ne gre torej za to, da jih ne bi imeli. Veliko jih je. Raziskujemo, katera bi bila lahko prava. Če je misel o energiji vakuuma prava, lahko z njo zelo specifično predvidevamo, kako se je vesolje razvijalo v času. Če pa gre za nekaj drugega, nekaj, kar ni absolutno konstantno, če gre za obliko energije, ki se s širjenjem vesolja počasi spreminja, bo opazovanje naših teleskopov rahlo drugačno. Zato poskušamo razviti čim natančnejše teleskope in zbrati toliko podatkov, kolikor se le da, da bi laže ugotovili, katera izmed možnih rešitev na mizi je prava.

Ali mislite, da bi lahko dokončna pojasnitev temne energije pomenila tudi kakšno tehnološko uporabo, na primer vesoljski pogon na temno energijo?

Žal mi je, da moram to reči, a mislim, da temna energija nima koristi za nobeno vrsto tehnologije. Temna energija je najmanjša možna količina energije, kar jih prostor lahko ima. Če hočemo zgraditi vesoljsko plovilo in prepotovati vesolje, bomo v ladji potrebovali večjo količino energije kot zunaj nje. In nekaj mora tu delovati kot pogon. To pa temna energija ne bi mogla biti. Mislim, da je povezava veliko bolj posredna. Bolj bomo razumeli temeljno fiziko in zakone narave, več pametnih zamisli bomo lahko imeli glede tega, kako pridobljeno znanje uporabiti pri tehnologiji.


Frekvenca X

683 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Temna energija - dr. Sean Carroll

30.05.2013


Je največja skrivnost v vesolju ter največja zadrega in glavobol današnjih fizikov. Je najmočnejša sila v vesolju, ki bo določila tudi njegov konec, vendar nihče ne ve, kaj je. Verjetno si marsikdo misli, da je dandanes, v svetu močno napredne tehnologije in znanosti, večji del narave že zdavnaj pojasnjen in odkritih že večina naravnih zakonov.

Ampak resnična slika je daleč od tega in znanstveniki zdaj dobesedno ne vedo, kaj predstavlja večino, ali natančneje, 70 odstotkov našega vesolja.

Vse, kar vedo o tem delu našega kozmosa, je to, da je nekakšna sila, ki vesolje vleče narazen. Temna energija je torej nadvse primerno ime za to skrivnostno entiteto. Vse se je začelo, ko sta se mednarodni skupini raziskovalcev pred približno trinajstimi leti lotili bolj ali manj rutinske raziskave.

Znanstveniki so namreč skušali narediti zelo natančno meritev ene temeljnih fizikalno-astronomskih konstant, njihova nepompozna študija pa je na koncu postavila na glavo celotno moderno kozmologijo in fizikom zastavila hudo zapleteno vprašanje. Astronomi Adam Riess, Brian Schmidt in Saul Perlmutter, ki so leta 2011 za to svoje delo prejeli Nobelovo nagrado, so namreč želeli določiti, s kakšno hitrostjo se naše vesolje širi, pri tem pa so merili svetlobo posebne vrste zvezd, znane kot supernova.

“The good news is that we know what 5 % of the universe is made of!” Interview with @seanmcarroll 202.tw/170tYtd #FX

— Matej Praprotnik (@praprotnix) May 28, 2013

Ko so preučili rezultate meritev, so pretreseni ugotovili, da se, v nasprotju z dotedanjim prepričanjem, vesolje širi pospešeno. To pa je pomenilo, da mora v vesolju obstajati neka neznana odbojna elementarna sila, ki je prej še nihče ni opazil. Nadaljnji izračuni vsote vse mase in energije v vesolju so pokazali, da je ta energija kar 70 odstotkov vsega kozmosa. Naše vesolje torej obvladuje skrivnostna temna sila in znanstveniki že več kot deset let na vse pretege razglabljajo, kaj bi le-ta lahko bila, a do zdaj jim še ni uspelo najti nobene res prepričljive razlage. Najprej so pomislili na to, da sam prazen prostor med zvezdami oziroma vakuum ustvarja to silo.

Čeprav se to sliši zelo nenavadno, pa teorija kvantne mehanike pravi, da v vakuumu iz nič nastajajo in izginjajo osnovni delci materije, zato pa vakuum v resnici ni popolnoma prazen, ampak ima določeno energijo. Ampak ko so fiziki izračunali energijo vakuuma in jo primerjali z močjo temne energije, so ugotovili, da njihovi teoretični izračuni vakuumu pripisujejo daleč previsoko energijo, kar 120 velikostnih redov preveliko. Za to neujemanje pravijo, da je najslabša teoretična napoved v zgodovini fizike, in so mu nadeli vzdevek vakuumska katastrofa.

Druga mogoča razlaga temne energije pa pravi, da v vesolju obstaja še eno, peto temeljno energijsko polje, podobno kot denimo elektromagnetno. Tudi s to razlago imajo fiziki celo kopico težav in je nikakor ne morejo uskladiti z eksperimentalnimi meritvami temne energije. Za marsikoga je temna energija zato največji izziv moderne fizike, za katerega kaže, da se spretno izmika vsakemu poskusu razlage. Raziskovalci zato dostikrat posežejo tudi po eksotičnih razlagah, ki se včasih zdijo kot obupni poskusi izhoda iz labirinta.

Tako so med drugim ugotavljali, da je temna energija posledica orjaških magnetnih polj, ki vladajo nad vesoljem, ali pa da gravitacija na velikih razdaljah deluje odbojno. Nekateri celo menijo, da je mogoče naš del vesolja v gigantski praznini sicer bolj poseljenega kozmosa, to pa je povsem v nasprotju s sedanjimi prepričanji v fiziki. Od narave temne energije je odvisna tudi usoda našega vesolja. Če bo njena moč v prihodnosti ostala enaka, se bo čez milijone let vesolje tako razširilo, da bo naša galaksija ostala v tako rekoč neskončni praznini, povsem izolirana od preostanka vesolja. Če bo moč temne energije narastla, pa vesolje čaka konec v tako imenovanem »velikem trganju«, ko bo ta energija narazen raztrgala vse, od galaksij, zvezd, planetov in celo samih atomov.

Mogoče pa se bo njena moč začela zmanjševati in se bo vesolje začelo sesedati vase. A ker temne energije ne poznamo dovolj dobro, fiziki preprosto ne vedo, kateri izmed teh scenarijev je pravilen. Ena izmed težav pri temni energiji je ta, da je znanstveniki ne morejo neposredno meriti oziroma detektirati, ampak lahko samo opazujejo njene učinke v vesolju. Zato so oči astronomov napeto obrnjene v nebo in v prihodnosti se bo začelo nekaj obsežnih raziskav, s katerimi bodo znanstveniki poskušali prodreti globlje v skrivnosti temne energije. Zdaj pa smo tam, ko nas temna energija še uči ponižnosti v našem neznanju in nepoznavanju še vedno skrivnostnega vesolja.

————–

INTERVJU: Dr. Sean Carroll, Kalifornijski inštitut za tehnologijo (Caltech). Intervju so pomagali prevajati poslušalci oddaje Frekvenca X. Oglejte si tudi potek prevajanja in transkript pogovora v angleščini.

Sliši se skoraj neverjetno, da za 70 odstotkov našega vesolja ne vemo, kaj je. Ali to za fizike ne pomeni vsaj majhne zadrege?

Veste, menim, da ne bi smelo biti zadrege. Kar malo smo razvajeni od znanstvenega napredka. Dobra novica je, da za 5 odstotkov vesolja vemo, iz česa je sestavljeno. Kar dobro ga razumemo in če za hip pomislite, s tem govorimo o vsem vesolju. Pred 100 leti nismo ničesar vedeli o širjenju vesolja, o temni snovi, temni energiji in podobnem. Mislim, da imamo kar nekaj razlogov, da smo ponosni na svoj napredek.

Koliko smo prepričani, da temna energija res obstaja? Je res izključeno, da bi bilo to samo iluzija zaradi kakšne napake pri astronomskih meritvah?

Dve možnosti sta za to, da temna energija ne obstaja. Prva je ta, da gre za napako pri opazovanju, in ta je bolj ali manj izključena. Imamo namreč več kot le en dokaz o obstoju temne energije. Tu je opazovanje supernov, razporejenosti galaksij in sevanja ozadja iz velikega poka. Vse daje popolnoma enak rezultat. Nismo pa čisto prepričani, da vse to najbolje razloži temna energija. Za te podatke bi bila možna tudi drugačna razlaga, na primer spremenjeno delovanje gravitacije na kozmoloških razdaljah. Ta hip je temna energija brez dvoma najboljša kandidatka za razlago, raziskujemo pa tudi druge možnosti.

Zakaj je izvor temne energije tako težko pojasniti? Človek bi si predstavljal, da bodo fiziki v teh desetih letih že zdavnaj našli razlago za ta pojav. Kako blizu odgovora smo danes?

Treba je poudariti, da že imamo zelo dobro razlago oziroma teorijo o tem, kaj bi lahko bila temna energija. Imenuje se kozmološka konstanta oziroma energija vakuuma. Vpeljal jo je že Einstein leta 1917. Težava z energijo vakuuma oziroma kozmološko konstanto ni to, da smo presenečeni, ker obstaja. Presenečeni smo, ker je tako šibka. Energija vakuuma je energija praznega prostora in ko se fiziki usedejo, da bi teoretično ocenili, koliko energije bi moralo obstajati v praznem prostoru, dobijo velikansko številko. Skrivnost je, zakaj je v naravi številka tako majhna. A dokler je tako majhna, se popolnoma ujema s podatki. Smo pa zelo pazljivi, da tega ne razumemo kot dokončno. Samo to, da imamo teorijo, ki deluje, še ne pomeni nujno, da je prava. Zato preučujemo vse možnosti, na katere lahko pomislimo.

Kaj pa vi osebno mislite, da je temna energija?

Menim, da se bo na koncu energija vakuuma izkazala za pravo razlago. Gre za to, da če vzamemo majhno točko v vesolju in jo popolnoma izpraznimo, tako da v njej ni več nobene materije, nobenega sevanja, nobene temne snovi ali česar koli drugega, dobimo popolnoma prazno območje. Pri tem se postavlja vprašanje: koliko energije je v tem delčku vesolja? Človek bi pomislil, da je odgovor nič − ker na tem območju ni ničesar, je preprosto prazen. A po Einsteinovi relativnostni teoriji, ki določa delovanje gravitacije v vesolju, obstaja število oziroma naravna konstanta vesolja, ki pove, koliko energije ima prazen prostor. Vse kaže, da nam je to število uspelo izmeriti. To vemo iz enega samega razloga: deluje namreč na prostor – čas. Vpliva na raztezanje vesolja in njegovo pospeševanje, kot smo odkrili s teleskopi.

Si upate napovedati, kdaj bodo znanstveniki končno pojasnili to skrivnostno silo?

V tem trenutku skušamo ločiti med različnimi možnimi teorijami. Ne gre torej za to, da jih ne bi imeli. Veliko jih je. Raziskujemo, katera bi bila lahko prava. Če je misel o energiji vakuuma prava, lahko z njo zelo specifično predvidevamo, kako se je vesolje razvijalo v času. Če pa gre za nekaj drugega, nekaj, kar ni absolutno konstantno, če gre za obliko energije, ki se s širjenjem vesolja počasi spreminja, bo opazovanje naših teleskopov rahlo drugačno. Zato poskušamo razviti čim natančnejše teleskope in zbrati toliko podatkov, kolikor se le da, da bi laže ugotovili, katera izmed možnih rešitev na mizi je prava.

Ali mislite, da bi lahko dokončna pojasnitev temne energije pomenila tudi kakšno tehnološko uporabo, na primer vesoljski pogon na temno energijo?

Žal mi je, da moram to reči, a mislim, da temna energija nima koristi za nobeno vrsto tehnologije. Temna energija je najmanjša možna količina energije, kar jih prostor lahko ima. Če hočemo zgraditi vesoljsko plovilo in prepotovati vesolje, bomo v ladji potrebovali večjo količino energije kot zunaj nje. In nekaj mora tu delovati kot pogon. To pa temna energija ne bi mogla biti. Mislim, da je povezava veliko bolj posredna. Bolj bomo razumeli temeljno fiziko in zakone narave, več pametnih zamisli bomo lahko imeli glede tega, kako pridobljeno znanje uporabiti pri tehnologiji.


21.01.2016

Žive, strašljive, lucidne, zanimive … sanje

Sanje so včasih mistične, včasih skoraj realistične. V njih lahko postanemo živali, živimo v vzporednem vesolju, včasih se nam v sanjah tudi uresničijo sanje. Nekaj zelo skrivnostnega je v sanjah, da se z njimi ukvarjamo že stoletja, vsaka kultura na drugačen način, pa še vedno nismo našli skupnega odgovora na vprašanje – kaj sanje sploh pomenijo.


14.01.2016

Izzivi potovanja v vesolje

Najbrž ne bi pomislili, da imata kuhanje juhe v hribih in izstreljevanje satelitov v tirnico okoli Zemlje kaj skupnega. Gre za kavitacijo, ki povzroča težave v črpalkah raketnih motorjev in v turbinah elektrarn, ne prizanaša ne živalim niti rastlinam, vendar pa take implozije lahko obrnemo tudi nam v prid.


14.01.2016

Izzivi potovanja v vesolje

Najbrž ne bi pomislili, da imata kuhanje juhe v hribih in izstreljevanje satelitov v tirnico okoli Zemlje kaj skupnega. Gre za kavitacijo, ki povzroča težave v črpalkah raketnih motorjev in v turbinah elektrarn, ne prizanaša ne živalim niti rastlinam, vendar pa take implozije lahko obrnemo tudi nam v prid.


07.01.2016

Bo elektrika poganjala tudi potniška letala? Morda pa res

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.


31.12.2015

Znanost v letu 2015

Voda na Marsu, bližnje srečanje s Plutonom, novi temperaturni rekordi, otroci s tremi starši, nevtrini, vrhunski svetovni fiziki v Ljubljani, nova vrsta človečnjaka … To je le nekaj asociacij na znanstveno leto 2015. Kaj so bila najprodornejša odkritja minulih 12 mesecev, katera so najbolj vroča raziskovalna področja in kaj je odmevalo znotraj naših meja, se spominjamo v posebni epizodi Frekvence X.


24.12.2015

Znanost ni slovenska prioriteta

Zakaj Slovenija vlaga v znanost in opremo manj kot v času Jugoslavije, kako je s pogoji dela in dosežki, kakšna je prihodnost slovenske znanosti in inovativnosti. Bo znanost kdaj naša prioriteta? Razmišljata dr. Vito Turk in dr. Martin Klanjšek.


10.12.2015

Podnebne spremembe

Medtem ko je podnebna znanost vse bolj prepričana v podnebne spremembe, zanikanje problema paradoksno narašča. Skepticizem je resda zdrava mera nezaupanja v prehitre sklepe. Skeptik hoče dokaze. A težava pri podnebnih spremembah in onesnaženem okolju na splošno je to, da je dokazov več kot dovolj. Gre bolj za zanikanje resnice, ki nam ni preveč všeč, ker ogroža naš trenutni način življenja.


03.12.2015

Moč nevednosti in negotovosti

Ljudje smo po naravi nagnjeni k temu, da poskušamo čim hitreje razrešiti negotovosti. Če smo v stresu, smo bistveno manj pripravljeni vztrajati pri odprtosti različnih možnosti. Strokovnjaki ugotavljajo, da se zaradi zatekanja k varnim odločitvam povečujejo tudi stereotipi do beguncev, teroristični napadi so vplivali na našo toleranco do sprejemanja alternativnih interpretacij dogajanja. Kako se soočati z negotovostjo in odprtostjo različnih možnosti raziskujemo v pogovorih z uglednim ameriškim socialnim psihologom Ariejem Kruglanskim, zdravnikom dr. Matjažem Zwittrom, statističarko Tino Žnidaršič in demografom dr. Janezom Malačičem.


26.11.2015

Prihodnost samovozečih vozil

Beremo časopis, rešujemo sudoku in brez slabe vesti telefoniramo. To je vožnja prihodnosti s samovozečimi avtomobili. Ti naj bi namreč bili naslednji stroj, ki bo nadomestil nekatera človeška dela in nam olajšal življenje. Vožnja po središčih mesta bi bila s takšnimi vozili manj stresna, avtomobil bi se samodejno odzival na ovire, poleg tega pa bi obstajala zmanjšana potreba po parkirnem prostoru, saj bi nas avtomobil odložil in se sam odpeljal domov.


19.11.2015

Novi materiali za vesoljske raziskave in zemeljsko uporabo

Izstreljevanje satelitov v vesolje je drago. Izstrelitev kilograma tovora v nizko tirnico stane 10 tisoč evrov, cena za bolj oddaljene tire je še precej višja. Osrednja sogovornika oddaje sta dr. Marcos Bavdž in dr. Janez Dolinšek.


12.11.2015

Živali in naša moralna odgovornost zanje

“Ali živali čutijo bolečino?” je vprašanje, ki si ga bomo zastavljali v tokratni Frekvenci X. Znanstveniki in filozofi imajo glede tega različna stališča, pritrdilni odgovor nanj pa bi marsikatero človekovo dejanje postavil v slabo moralno luč. Če namreč živali ne čutijo bolečine, potem so eksperimenti na njih in njihov zakol moralno neproblematična dejanja. Če pa živali to sposobnost imajo, potem se stvari zapletejo in postanejo kočljive.


05.11.2015

V vesolje s Chrisom Hadfieldom

V vesolje je doslej poletelo 551 ljudi, med njimi je tudi kanadski astronavt Chris Hadfield. Hadfield je v vesolje poletel trikrat, več mesecev je bival na mednarodni vesoljski postaji, kjer je posnel tudi videospot za legendarno pesem Space Oddity. Oddajo smo pripravili v sodelovanju s Slavkom Jeričem, avtorjem podcasta Številke, ki je v studio osvetlil nekaj zanimivih statističnih dejstev povezanih s človekovim osvajanjem vesolja.


29.10.2015

PODCAST: Skrivnost človečnjaka Homo naledi

V jami v Južnoafriški republiki so pred kratkim odkrili novo vrsto človečnjaka – vrsto Homo naledi, ki naj bi po mnenju odkriteljev predstavljala do zdaj manjkajoči člen v uganki človeške evolucije. A stvar ni tako preprosta – okostje je precej nenavadno, za povrh pa znanstveniki ne znajo niti določiti, kako staro je. Kdo je bil Homo naledi in kakšna dogodivščina je bilo njegovo izkopavanje?


22.10.2015

PODCAST: Življenje zvezd

Življenje zvezd se zdi v marsičem fantastična zgodba narave, ki omogoča tudi naš obstoj. Razložili bomo, kako sta letošnja Nobelova nagrajenca za fiziko zaokrožila razumevanje jedrskega zlivanja v notranjosti Sonca in pri tem odkrila nove lastnosti delcev z imenom nevtrini. Jedrsko zlivanje primerjamo z nasprotno reakcijo jedrske cepitve, ki poganja elektrarno v Krškem, in pojasnjujemo, da so manjši reaktorji, kot je tisti v Podgorici pri Ljubljani, nepogrešljivi v industrijskih in medicinskih preiskavah in terapijah.


22.10.2015

Podcast s podkasterjem: dr. Luka Ausec

Luka Ausec je doktor biologije. Tekoče bere DNK, deloma pa tudi literaturo. Navdušuje ga pregibanje telesa in možganov v vse smeri, deloma tudi navznoter. Luka je znanstvenik in raziskovalec v zasebnem sektorju. Podkaster. Na Metini listi že dve leti pripravlja MetaPHoDcast. Skupaj z Ano Slavec se pogovarjata z mladimi raziskovalci in raziskovalkami o življenju, vesolju in sploh vsem. Njuni sogovorniki so znanstveniki pred zaključkom doktorata z različnih področij znanosti. Kakšne so razmere med mladimi znanstveniki, kako je s komuniciranjem znanosti, kaj posluša Luka?


15.10.2015

PODCAST: Afera Dieselgate

Potem ko se je majhna ekipa znanstvenikov z univerze Zahodna Virginija lotila preverjanja, kako neki Volkswagnu uspe izdelati tako dobre motorje, je tega avtomobilskega velikana nepričakovano ujela tudi pri goljufanju in zavajanju glede izpustov iz svojih dizelskih vozil. To pot na tnalu ni bil zloglasni ogljikov dioksid, temveč dušikovi oksidi. Kako točno je Volkswagen goljufal in kako so ga ujeli, s čim vse naši avtomobili onesnažujejo ozračje in ali so bencinski motorji čistejši od dizelski, raziskujemo v tokratni Frekvenci X.


09.10.2015

PODCAST: Nobelove nagrade 2015

Smo v tednu razglasitev letošnjih dobitnikov Nobelovih nagrad. Na področju medicine so nagrado prinesla zdravila za zdravljenje malarije in nekaterih parazitskih bolezni, v fiziki je odbor najbolj prepričalo odkritje, da nevtrini, ena izmed skupin osnovnih delcev, vendarle imajo maso, v kemiji pa letos odmevajo dosežki pri odpravljanja poškodb DNK. Pogovarjali smo se tudi s prevajalko del Svetlane Aleksijevič, letošnje Nobelove nagrajenke za književnost.


01.10.2015

Mikročipiranje ljudi

Nič več izgubljenih ali pozabljenih ključev, nič več ukradenih denarnic in predvsem nič več prepoznih diagnoz bolezni. Kako, se sprašujete? Z mikročipiranjem ljudi. Strokovnjaki obljubljajo, da bo imelo vstavljanje mikročipov v človeško telo v prihodnosti velik, verjetno tudi ugoden vpliv na naše življenje. Kakšna pa so etična, medicinska in varnostna vprašanja o takšni praksi, ki ni videti le kot običajna modna muha


24.09.2015

Alan Guth, oče inflacijske teorije vesolja

Alan Guth je tisti fizik, ki je postavil inflacijsko teorijo o vesolju, model pospešenega razširjanja vesolja v prvih trenutkih po velikem poku. Pred tedni je bil gost konference Lepton Photon v Ljubljani. Razložil je, kako so se mu v eni noči izšli vsi računi s katerimi se je uvrstil med legendarne fizike. Alan Guth je eden izmed resnih kandidatov za Nobelovo nagrado za fiziko.


20.08.2015

Konferenca Lepton Photon

V Ljubljani ta teden poteka največja letna konferenca fizike visokih energij "Lepton Photon". Morda lahko pričakujemo nove rezultate z Velikega hadronskega trkalnika v Ženevi na poti do nove fizike, konferenca pa bo ponudila tudi poljudno predavanje očeta inflacijske kozmologije Alana Gutha z MIT.


Stran 20 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov