Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Temna energija - dr. Sean Carroll

30.05.2013


Je največja skrivnost v vesolju ter največja zadrega in glavobol današnjih fizikov. Je najmočnejša sila v vesolju, ki bo določila tudi njegov konec, vendar nihče ne ve, kaj je. Verjetno si marsikdo misli, da je dandanes, v svetu močno napredne tehnologije in znanosti, večji del narave že zdavnaj pojasnjen in odkritih že večina naravnih zakonov.

Ampak resnična slika je daleč od tega in znanstveniki zdaj dobesedno ne vedo, kaj predstavlja večino, ali natančneje, 70 odstotkov našega vesolja.

Vse, kar vedo o tem delu našega kozmosa, je to, da je nekakšna sila, ki vesolje vleče narazen. Temna energija je torej nadvse primerno ime za to skrivnostno entiteto. Vse se je začelo, ko sta se mednarodni skupini raziskovalcev pred približno trinajstimi leti lotili bolj ali manj rutinske raziskave.

Znanstveniki so namreč skušali narediti zelo natančno meritev ene temeljnih fizikalno-astronomskih konstant, njihova nepompozna študija pa je na koncu postavila na glavo celotno moderno kozmologijo in fizikom zastavila hudo zapleteno vprašanje. Astronomi Adam Riess, Brian Schmidt in Saul Perlmutter, ki so leta 2011 za to svoje delo prejeli Nobelovo nagrado, so namreč želeli določiti, s kakšno hitrostjo se naše vesolje širi, pri tem pa so merili svetlobo posebne vrste zvezd, znane kot supernova.

“The good news is that we know what 5 % of the universe is made of!” Interview with @seanmcarroll 202.tw/170tYtd #FX

— Matej Praprotnik (@praprotnix) May 28, 2013

Ko so preučili rezultate meritev, so pretreseni ugotovili, da se, v nasprotju z dotedanjim prepričanjem, vesolje širi pospešeno. To pa je pomenilo, da mora v vesolju obstajati neka neznana odbojna elementarna sila, ki je prej še nihče ni opazil. Nadaljnji izračuni vsote vse mase in energije v vesolju so pokazali, da je ta energija kar 70 odstotkov vsega kozmosa. Naše vesolje torej obvladuje skrivnostna temna sila in znanstveniki že več kot deset let na vse pretege razglabljajo, kaj bi le-ta lahko bila, a do zdaj jim še ni uspelo najti nobene res prepričljive razlage. Najprej so pomislili na to, da sam prazen prostor med zvezdami oziroma vakuum ustvarja to silo.

Čeprav se to sliši zelo nenavadno, pa teorija kvantne mehanike pravi, da v vakuumu iz nič nastajajo in izginjajo osnovni delci materije, zato pa vakuum v resnici ni popolnoma prazen, ampak ima določeno energijo. Ampak ko so fiziki izračunali energijo vakuuma in jo primerjali z močjo temne energije, so ugotovili, da njihovi teoretični izračuni vakuumu pripisujejo daleč previsoko energijo, kar 120 velikostnih redov preveliko. Za to neujemanje pravijo, da je najslabša teoretična napoved v zgodovini fizike, in so mu nadeli vzdevek vakuumska katastrofa.

Druga mogoča razlaga temne energije pa pravi, da v vesolju obstaja še eno, peto temeljno energijsko polje, podobno kot denimo elektromagnetno. Tudi s to razlago imajo fiziki celo kopico težav in je nikakor ne morejo uskladiti z eksperimentalnimi meritvami temne energije. Za marsikoga je temna energija zato največji izziv moderne fizike, za katerega kaže, da se spretno izmika vsakemu poskusu razlage. Raziskovalci zato dostikrat posežejo tudi po eksotičnih razlagah, ki se včasih zdijo kot obupni poskusi izhoda iz labirinta.

Tako so med drugim ugotavljali, da je temna energija posledica orjaških magnetnih polj, ki vladajo nad vesoljem, ali pa da gravitacija na velikih razdaljah deluje odbojno. Nekateri celo menijo, da je mogoče naš del vesolja v gigantski praznini sicer bolj poseljenega kozmosa, to pa je povsem v nasprotju s sedanjimi prepričanji v fiziki. Od narave temne energije je odvisna tudi usoda našega vesolja. Če bo njena moč v prihodnosti ostala enaka, se bo čez milijone let vesolje tako razširilo, da bo naša galaksija ostala v tako rekoč neskončni praznini, povsem izolirana od preostanka vesolja. Če bo moč temne energije narastla, pa vesolje čaka konec v tako imenovanem »velikem trganju«, ko bo ta energija narazen raztrgala vse, od galaksij, zvezd, planetov in celo samih atomov.

Mogoče pa se bo njena moč začela zmanjševati in se bo vesolje začelo sesedati vase. A ker temne energije ne poznamo dovolj dobro, fiziki preprosto ne vedo, kateri izmed teh scenarijev je pravilen. Ena izmed težav pri temni energiji je ta, da je znanstveniki ne morejo neposredno meriti oziroma detektirati, ampak lahko samo opazujejo njene učinke v vesolju. Zato so oči astronomov napeto obrnjene v nebo in v prihodnosti se bo začelo nekaj obsežnih raziskav, s katerimi bodo znanstveniki poskušali prodreti globlje v skrivnosti temne energije. Zdaj pa smo tam, ko nas temna energija še uči ponižnosti v našem neznanju in nepoznavanju še vedno skrivnostnega vesolja.

————–

INTERVJU: Dr. Sean Carroll, Kalifornijski inštitut za tehnologijo (Caltech). Intervju so pomagali prevajati poslušalci oddaje Frekvenca X. Oglejte si tudi potek prevajanja in transkript pogovora v angleščini.

Sliši se skoraj neverjetno, da za 70 odstotkov našega vesolja ne vemo, kaj je. Ali to za fizike ne pomeni vsaj majhne zadrege?

Veste, menim, da ne bi smelo biti zadrege. Kar malo smo razvajeni od znanstvenega napredka. Dobra novica je, da za 5 odstotkov vesolja vemo, iz česa je sestavljeno. Kar dobro ga razumemo in če za hip pomislite, s tem govorimo o vsem vesolju. Pred 100 leti nismo ničesar vedeli o širjenju vesolja, o temni snovi, temni energiji in podobnem. Mislim, da imamo kar nekaj razlogov, da smo ponosni na svoj napredek.

Koliko smo prepričani, da temna energija res obstaja? Je res izključeno, da bi bilo to samo iluzija zaradi kakšne napake pri astronomskih meritvah?

Dve možnosti sta za to, da temna energija ne obstaja. Prva je ta, da gre za napako pri opazovanju, in ta je bolj ali manj izključena. Imamo namreč več kot le en dokaz o obstoju temne energije. Tu je opazovanje supernov, razporejenosti galaksij in sevanja ozadja iz velikega poka. Vse daje popolnoma enak rezultat. Nismo pa čisto prepričani, da vse to najbolje razloži temna energija. Za te podatke bi bila možna tudi drugačna razlaga, na primer spremenjeno delovanje gravitacije na kozmoloških razdaljah. Ta hip je temna energija brez dvoma najboljša kandidatka za razlago, raziskujemo pa tudi druge možnosti.

Zakaj je izvor temne energije tako težko pojasniti? Človek bi si predstavljal, da bodo fiziki v teh desetih letih že zdavnaj našli razlago za ta pojav. Kako blizu odgovora smo danes?

Treba je poudariti, da že imamo zelo dobro razlago oziroma teorijo o tem, kaj bi lahko bila temna energija. Imenuje se kozmološka konstanta oziroma energija vakuuma. Vpeljal jo je že Einstein leta 1917. Težava z energijo vakuuma oziroma kozmološko konstanto ni to, da smo presenečeni, ker obstaja. Presenečeni smo, ker je tako šibka. Energija vakuuma je energija praznega prostora in ko se fiziki usedejo, da bi teoretično ocenili, koliko energije bi moralo obstajati v praznem prostoru, dobijo velikansko številko. Skrivnost je, zakaj je v naravi številka tako majhna. A dokler je tako majhna, se popolnoma ujema s podatki. Smo pa zelo pazljivi, da tega ne razumemo kot dokončno. Samo to, da imamo teorijo, ki deluje, še ne pomeni nujno, da je prava. Zato preučujemo vse možnosti, na katere lahko pomislimo.

Kaj pa vi osebno mislite, da je temna energija?

Menim, da se bo na koncu energija vakuuma izkazala za pravo razlago. Gre za to, da če vzamemo majhno točko v vesolju in jo popolnoma izpraznimo, tako da v njej ni več nobene materije, nobenega sevanja, nobene temne snovi ali česar koli drugega, dobimo popolnoma prazno območje. Pri tem se postavlja vprašanje: koliko energije je v tem delčku vesolja? Človek bi pomislil, da je odgovor nič − ker na tem območju ni ničesar, je preprosto prazen. A po Einsteinovi relativnostni teoriji, ki določa delovanje gravitacije v vesolju, obstaja število oziroma naravna konstanta vesolja, ki pove, koliko energije ima prazen prostor. Vse kaže, da nam je to število uspelo izmeriti. To vemo iz enega samega razloga: deluje namreč na prostor – čas. Vpliva na raztezanje vesolja in njegovo pospeševanje, kot smo odkrili s teleskopi.

Si upate napovedati, kdaj bodo znanstveniki končno pojasnili to skrivnostno silo?

V tem trenutku skušamo ločiti med različnimi možnimi teorijami. Ne gre torej za to, da jih ne bi imeli. Veliko jih je. Raziskujemo, katera bi bila lahko prava. Če je misel o energiji vakuuma prava, lahko z njo zelo specifično predvidevamo, kako se je vesolje razvijalo v času. Če pa gre za nekaj drugega, nekaj, kar ni absolutno konstantno, če gre za obliko energije, ki se s širjenjem vesolja počasi spreminja, bo opazovanje naših teleskopov rahlo drugačno. Zato poskušamo razviti čim natančnejše teleskope in zbrati toliko podatkov, kolikor se le da, da bi laže ugotovili, katera izmed možnih rešitev na mizi je prava.

Ali mislite, da bi lahko dokončna pojasnitev temne energije pomenila tudi kakšno tehnološko uporabo, na primer vesoljski pogon na temno energijo?

Žal mi je, da moram to reči, a mislim, da temna energija nima koristi za nobeno vrsto tehnologije. Temna energija je najmanjša možna količina energije, kar jih prostor lahko ima. Če hočemo zgraditi vesoljsko plovilo in prepotovati vesolje, bomo v ladji potrebovali večjo količino energije kot zunaj nje. In nekaj mora tu delovati kot pogon. To pa temna energija ne bi mogla biti. Mislim, da je povezava veliko bolj posredna. Bolj bomo razumeli temeljno fiziko in zakone narave, več pametnih zamisli bomo lahko imeli glede tega, kako pridobljeno znanje uporabiti pri tehnologiji.


Frekvenca X

683 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Temna energija - dr. Sean Carroll

30.05.2013


Je največja skrivnost v vesolju ter največja zadrega in glavobol današnjih fizikov. Je najmočnejša sila v vesolju, ki bo določila tudi njegov konec, vendar nihče ne ve, kaj je. Verjetno si marsikdo misli, da je dandanes, v svetu močno napredne tehnologije in znanosti, večji del narave že zdavnaj pojasnjen in odkritih že večina naravnih zakonov.

Ampak resnična slika je daleč od tega in znanstveniki zdaj dobesedno ne vedo, kaj predstavlja večino, ali natančneje, 70 odstotkov našega vesolja.

Vse, kar vedo o tem delu našega kozmosa, je to, da je nekakšna sila, ki vesolje vleče narazen. Temna energija je torej nadvse primerno ime za to skrivnostno entiteto. Vse se je začelo, ko sta se mednarodni skupini raziskovalcev pred približno trinajstimi leti lotili bolj ali manj rutinske raziskave.

Znanstveniki so namreč skušali narediti zelo natančno meritev ene temeljnih fizikalno-astronomskih konstant, njihova nepompozna študija pa je na koncu postavila na glavo celotno moderno kozmologijo in fizikom zastavila hudo zapleteno vprašanje. Astronomi Adam Riess, Brian Schmidt in Saul Perlmutter, ki so leta 2011 za to svoje delo prejeli Nobelovo nagrado, so namreč želeli določiti, s kakšno hitrostjo se naše vesolje širi, pri tem pa so merili svetlobo posebne vrste zvezd, znane kot supernova.

“The good news is that we know what 5 % of the universe is made of!” Interview with @seanmcarroll 202.tw/170tYtd #FX

— Matej Praprotnik (@praprotnix) May 28, 2013

Ko so preučili rezultate meritev, so pretreseni ugotovili, da se, v nasprotju z dotedanjim prepričanjem, vesolje širi pospešeno. To pa je pomenilo, da mora v vesolju obstajati neka neznana odbojna elementarna sila, ki je prej še nihče ni opazil. Nadaljnji izračuni vsote vse mase in energije v vesolju so pokazali, da je ta energija kar 70 odstotkov vsega kozmosa. Naše vesolje torej obvladuje skrivnostna temna sila in znanstveniki že več kot deset let na vse pretege razglabljajo, kaj bi le-ta lahko bila, a do zdaj jim še ni uspelo najti nobene res prepričljive razlage. Najprej so pomislili na to, da sam prazen prostor med zvezdami oziroma vakuum ustvarja to silo.

Čeprav se to sliši zelo nenavadno, pa teorija kvantne mehanike pravi, da v vakuumu iz nič nastajajo in izginjajo osnovni delci materije, zato pa vakuum v resnici ni popolnoma prazen, ampak ima določeno energijo. Ampak ko so fiziki izračunali energijo vakuuma in jo primerjali z močjo temne energije, so ugotovili, da njihovi teoretični izračuni vakuumu pripisujejo daleč previsoko energijo, kar 120 velikostnih redov preveliko. Za to neujemanje pravijo, da je najslabša teoretična napoved v zgodovini fizike, in so mu nadeli vzdevek vakuumska katastrofa.

Druga mogoča razlaga temne energije pa pravi, da v vesolju obstaja še eno, peto temeljno energijsko polje, podobno kot denimo elektromagnetno. Tudi s to razlago imajo fiziki celo kopico težav in je nikakor ne morejo uskladiti z eksperimentalnimi meritvami temne energije. Za marsikoga je temna energija zato največji izziv moderne fizike, za katerega kaže, da se spretno izmika vsakemu poskusu razlage. Raziskovalci zato dostikrat posežejo tudi po eksotičnih razlagah, ki se včasih zdijo kot obupni poskusi izhoda iz labirinta.

Tako so med drugim ugotavljali, da je temna energija posledica orjaških magnetnih polj, ki vladajo nad vesoljem, ali pa da gravitacija na velikih razdaljah deluje odbojno. Nekateri celo menijo, da je mogoče naš del vesolja v gigantski praznini sicer bolj poseljenega kozmosa, to pa je povsem v nasprotju s sedanjimi prepričanji v fiziki. Od narave temne energije je odvisna tudi usoda našega vesolja. Če bo njena moč v prihodnosti ostala enaka, se bo čez milijone let vesolje tako razširilo, da bo naša galaksija ostala v tako rekoč neskončni praznini, povsem izolirana od preostanka vesolja. Če bo moč temne energije narastla, pa vesolje čaka konec v tako imenovanem »velikem trganju«, ko bo ta energija narazen raztrgala vse, od galaksij, zvezd, planetov in celo samih atomov.

Mogoče pa se bo njena moč začela zmanjševati in se bo vesolje začelo sesedati vase. A ker temne energije ne poznamo dovolj dobro, fiziki preprosto ne vedo, kateri izmed teh scenarijev je pravilen. Ena izmed težav pri temni energiji je ta, da je znanstveniki ne morejo neposredno meriti oziroma detektirati, ampak lahko samo opazujejo njene učinke v vesolju. Zato so oči astronomov napeto obrnjene v nebo in v prihodnosti se bo začelo nekaj obsežnih raziskav, s katerimi bodo znanstveniki poskušali prodreti globlje v skrivnosti temne energije. Zdaj pa smo tam, ko nas temna energija še uči ponižnosti v našem neznanju in nepoznavanju še vedno skrivnostnega vesolja.

————–

INTERVJU: Dr. Sean Carroll, Kalifornijski inštitut za tehnologijo (Caltech). Intervju so pomagali prevajati poslušalci oddaje Frekvenca X. Oglejte si tudi potek prevajanja in transkript pogovora v angleščini.

Sliši se skoraj neverjetno, da za 70 odstotkov našega vesolja ne vemo, kaj je. Ali to za fizike ne pomeni vsaj majhne zadrege?

Veste, menim, da ne bi smelo biti zadrege. Kar malo smo razvajeni od znanstvenega napredka. Dobra novica je, da za 5 odstotkov vesolja vemo, iz česa je sestavljeno. Kar dobro ga razumemo in če za hip pomislite, s tem govorimo o vsem vesolju. Pred 100 leti nismo ničesar vedeli o širjenju vesolja, o temni snovi, temni energiji in podobnem. Mislim, da imamo kar nekaj razlogov, da smo ponosni na svoj napredek.

Koliko smo prepričani, da temna energija res obstaja? Je res izključeno, da bi bilo to samo iluzija zaradi kakšne napake pri astronomskih meritvah?

Dve možnosti sta za to, da temna energija ne obstaja. Prva je ta, da gre za napako pri opazovanju, in ta je bolj ali manj izključena. Imamo namreč več kot le en dokaz o obstoju temne energije. Tu je opazovanje supernov, razporejenosti galaksij in sevanja ozadja iz velikega poka. Vse daje popolnoma enak rezultat. Nismo pa čisto prepričani, da vse to najbolje razloži temna energija. Za te podatke bi bila možna tudi drugačna razlaga, na primer spremenjeno delovanje gravitacije na kozmoloških razdaljah. Ta hip je temna energija brez dvoma najboljša kandidatka za razlago, raziskujemo pa tudi druge možnosti.

Zakaj je izvor temne energije tako težko pojasniti? Človek bi si predstavljal, da bodo fiziki v teh desetih letih že zdavnaj našli razlago za ta pojav. Kako blizu odgovora smo danes?

Treba je poudariti, da že imamo zelo dobro razlago oziroma teorijo o tem, kaj bi lahko bila temna energija. Imenuje se kozmološka konstanta oziroma energija vakuuma. Vpeljal jo je že Einstein leta 1917. Težava z energijo vakuuma oziroma kozmološko konstanto ni to, da smo presenečeni, ker obstaja. Presenečeni smo, ker je tako šibka. Energija vakuuma je energija praznega prostora in ko se fiziki usedejo, da bi teoretično ocenili, koliko energije bi moralo obstajati v praznem prostoru, dobijo velikansko številko. Skrivnost je, zakaj je v naravi številka tako majhna. A dokler je tako majhna, se popolnoma ujema s podatki. Smo pa zelo pazljivi, da tega ne razumemo kot dokončno. Samo to, da imamo teorijo, ki deluje, še ne pomeni nujno, da je prava. Zato preučujemo vse možnosti, na katere lahko pomislimo.

Kaj pa vi osebno mislite, da je temna energija?

Menim, da se bo na koncu energija vakuuma izkazala za pravo razlago. Gre za to, da če vzamemo majhno točko v vesolju in jo popolnoma izpraznimo, tako da v njej ni več nobene materije, nobenega sevanja, nobene temne snovi ali česar koli drugega, dobimo popolnoma prazno območje. Pri tem se postavlja vprašanje: koliko energije je v tem delčku vesolja? Človek bi pomislil, da je odgovor nič − ker na tem območju ni ničesar, je preprosto prazen. A po Einsteinovi relativnostni teoriji, ki določa delovanje gravitacije v vesolju, obstaja število oziroma naravna konstanta vesolja, ki pove, koliko energije ima prazen prostor. Vse kaže, da nam je to število uspelo izmeriti. To vemo iz enega samega razloga: deluje namreč na prostor – čas. Vpliva na raztezanje vesolja in njegovo pospeševanje, kot smo odkrili s teleskopi.

Si upate napovedati, kdaj bodo znanstveniki končno pojasnili to skrivnostno silo?

V tem trenutku skušamo ločiti med različnimi možnimi teorijami. Ne gre torej za to, da jih ne bi imeli. Veliko jih je. Raziskujemo, katera bi bila lahko prava. Če je misel o energiji vakuuma prava, lahko z njo zelo specifično predvidevamo, kako se je vesolje razvijalo v času. Če pa gre za nekaj drugega, nekaj, kar ni absolutno konstantno, če gre za obliko energije, ki se s širjenjem vesolja počasi spreminja, bo opazovanje naših teleskopov rahlo drugačno. Zato poskušamo razviti čim natančnejše teleskope in zbrati toliko podatkov, kolikor se le da, da bi laže ugotovili, katera izmed možnih rešitev na mizi je prava.

Ali mislite, da bi lahko dokončna pojasnitev temne energije pomenila tudi kakšno tehnološko uporabo, na primer vesoljski pogon na temno energijo?

Žal mi je, da moram to reči, a mislim, da temna energija nima koristi za nobeno vrsto tehnologije. Temna energija je najmanjša možna količina energije, kar jih prostor lahko ima. Če hočemo zgraditi vesoljsko plovilo in prepotovati vesolje, bomo v ladji potrebovali večjo količino energije kot zunaj nje. In nekaj mora tu delovati kot pogon. To pa temna energija ne bi mogla biti. Mislim, da je povezava veliko bolj posredna. Bolj bomo razumeli temeljno fiziko in zakone narave, več pametnih zamisli bomo lahko imeli glede tega, kako pridobljeno znanje uporabiti pri tehnologiji.


30.10.2023

Prah - od zlata v hišnem prahu do iskalcev kozmičnega prahu na strehah

Dvignimo malo prahu ... okoli prahu! Ste ta teden že obrisali prah in posesali? Morda bi morali … Zagotovo pa boste, ko vam na uho zaide najnovejša Frekvenca X, ki skupaj z geologom Klemnom Teranom spoznava hišni in cestni prah ter njune skrb vzbujajoče plati. V dneh, ko se sliši svetopisemski stavek 'Prah si in v prah se povrneš', pa bomo tudi na lovu za kozmičnim prahom.


26.10.2023

Znanost v oktobru: Od bisfenola A do misije na asteroid

Pregledi meseca so nazaj. Tokrat pregledujemo najopaznejša znanstvena odkritja oktobra. Nobelove nagrade smo že obdelali, v današnji oddaji se bomo posvetili Zoisovim nagradam, ki so nekakšne slovenske Nobelove nagrade. Gostimo Zoisovo nagrajenko za posebne dosežke na področju farmacevtske kemije in toksikologije dr. Lucijo Peterlin Mašič. S kolegi raziskuje nadomestke bisfenola A, spojine, ki jo uporabljajo za pridobitev plastike, BPA pa je problematičen, ker je motilec endokrinega sistema. Slišite lahko tudi nekaj drugih novic iz sveta znanosti.


19.10.2023

Vinska mušica - drobna junakinja, ki tlakuje pot genetiki

Postavite na mizo skledo sadja in v hipu bodo tam. Vzamejo se tako rekoč iz nič – majhne, rjave, z velikanskimi očmi. Te drobne in za mnoge tako moteče vinske mušice, ki jih je največ prav jeseni, imajo neverjetno znanstveno pot, podpisujejo se pod kar šest Nobelovih nagrad.


12.10.2023

Na misiji k Jupitrovim štirim karizmatičnim družicam

Jupiter je daleč največji planet v sončnem sistemu – več kot dvakrat večji od vseh drugih planetov skupaj! Kljub neznansko lepim umetelnim progam in lisam vladajo tam sila neprijazno okolje, ledeno mrzle temperature in pošastno sevanje. In zakaj nas ta tako neprijazen svet potem tako zanima? Zakaj k njegovim štirim družicam, Galilejevim lunam, pošiljamo novo evropsko sondo? Odgovor je preprost – voda in skrito življenje. Če bi bila naša Zemlja frnikola, bi bil Jupiter velik kot košarkarska žoga. K njemu se je aprila podala tudi evropska sonda Juice.


05.10.2023

Nobelove nagrade 2023: o mRNK cepivih, atosekundah in kvantnih pikah

Raziskave elektronov v atomih in molekulah, ki se odvijajo na nepredstavljivo kratkih časovnih skalah, znanstvena dognanja v ozadju mRNK cepiv, ki so pomembno zaznamovala pandemijo koronavirusa, in pa kvantne pike, polprevodniške nanostrukture, ki se jih uporablja na več različnih tehnoloških področjih. To so presežki, za katere bodo letos v Stockholmu med drugim podelili Nobelove nagrade. Kaj natanko so odkrili izpostavljeni znanstveniki, kako se te raziskave kažejo v praksi in kakšne so njihove življenjske zgodbe, analiziramo v Frekvenci X, ki si tokrat podaja roke z znanstveno redakcijo Prvega programa Radia Slovenija.


28.09.2023

Josef Ressel: Od vijaka do junaka

Josef Ressel je bil morda eden zadnjih res širokih mislecev. Po osnovni izobrazbi gozdar, je pomemben pečat pustil na zelo različnih področjih. Tehnike in inovacij se je loteval na način Leonarda Da Vincija. Najbolj je znan po izumu ladijskega vijaka, pomembna je njegova vloga pri pogozdovanju Krasa, bil je hidrotehnični strokovnjak. V prvem obdobju industrijske revolucije se je ukvarjal z novimi materiali in tehnologijami, zlasti pa ga je pritegnilo raziskovanje možnosti tehnoloških izboljšav v prometu in energetiki. Med zanimivejše ideje lahko štejemo tudi brezsmradno stranišče in lokomobil. Deloval je na Dolenjskem, na Krasu, v Trstu in Ljubljani, kjer je umrl leta 1857. Josef Ressel je bil češko-nemških korenin, v Ljubljani ima svojo cesto in spomenik, v Šentjerneju so mu posvetili metuljček in penino, načrtujejo tudi Resslov most. Kakšna je njegova zapuščina?


21.09.2023

Jožef Stefan: Eden največjih fizikov svojega časa

Kdo je bil Jožef Stefan? Čeprav se nam zdi, da ga vsi po malem poznamo, saj je po njem poimenovan največji znanstveni inštitut v Sloveniji, pa o njem v resnici vemo zelo malo. Znano je, da je bil otrok revnih in nepismenih staršev, s svojo nadarjenostjo in osredotočenostjo pa je kmalu dokazal, da je velik učenjak, postal je tudi eden vodilnih znanstvenikov v avstrijskem cesarstvu. Fizika je bila njegovo življenje - dobesedno, veliko dni je prespal kar na inštitutu, ki ga je vodil, ker je bil tako zelo predan delu. Poročil se je šele pri 56 letih in v sreči v dvoje je užival le kakšno leto, saj je kmalu po poroki umrl zaradi možganske kapi. Kdo je bil torej ta veliki fizik, edini znanstvenik slovenskega rodu, po katerem je poimenovan tudi fizikalni Stefan-Boltzmannov zakon?


14.09.2023

Alma Sodnik: Ženska, ki je stremela k iskanju čiste resnice

Njeno življenje ni bilo lahko. Izgubila je edinega otroka, podpirala v vojni poškodovanega moža in kariero gradila v moškem akademskem svetu ter v času najostrejše stalinizacije.


07.09.2023

Milan Vidmar: pionirski elektrotehnik, šahovski velemojster in legendarni profesor

Ogrevanje pred novo sezono Frekvence X začenjamo z zavojem v preteklost, k znanstvenikom, ki so se rodili ali delovali na slovenskih tleh in so splošni javnosti manj znani. Kot prvemu se bomo posvetili profesorju Milanu Vidmarju, ki je zaznamoval razvoj slovenske elektrotehnike in prva leta ljubljanske Univerze. O profesorju Vidmarju kot pionirskem elektrotehniku, vrhunskemu šahovskemu velemojstru in velikem borcu, ki je vplival na družbeni in gospodarski razvoj slovenskega ozemlja v svojem času, se je Jan Grilc pogovarjali s tremi gosti, ki jim je profesor Vidmar vsakemu po svoje zaznamoval življenjsko pot. Kdo je bil torej človek, ki je odločilno vplival na razvoj Univerze v zgodnjih letih, spoznal Nikolo Teslo in odigral legendarne partije z največjimi velemojstri šaha v svojem času? Gosti: - prof. dr. Rafael Cajhen, predavatelj, mentor in raziskovalec na Fakulteti za elektrotehniko - prof. dr. Maks Babuder, dolgoletni direktor Elektrotehniškega inštituta Milan Vidmar - prof. dr. Ivan Bratko, Fakulteta za računalništvo in informatiko, šahovski mojstrski kandidat


29.06.2023

Bolni - a le na dopustu?

Delaš, se trudiš, da boš pred dopustom storil vse, kar moraš, končno odideš iz pisarne, ugasneš luč, odzdraviš kolegom in v glavi snuješ načrte za dopust. Pakiraš, se voziš na morje, potem pa kar naenkrat bolečine v mišicah, smrkanje, morda celo vročina. Znano? Marsikomu verjetno res. Preddopustniška Frekvenca X se torej odpravlja na teren tako imenovane bolezni prostočasja. Zakaj se zgodi, da pogosto zbolimo ravno takrat, ko naj bi se imeli fino. Torej - na dopustu.


22.06.2023

Namakanje

Predzadnja Frekvenca X v letošnji sezoni se tik pred poletno vročino poglablja v namakalne sisteme. Prav ti so bili osnova, na kateri so med drugim zrasle antične civilizacije, od Kitajske do Egipta, hkrati pa so tudi danes marsikje osnova kmetijstva. V Grčiji, Italiji in Španiji na primer namakajo skoraj polovico kmetijskih površin, Slovenija pa le en odstotek. Kakšen je razlog, kako je z vodo in še marsikaj zanimivega, je o namakalnih sistemih izvedela Maja Ratej.


15.06.2023

Ko popusti jez

Po siloviti eksploziji in porušitvi jezu Nova Kahovka, ki je v južni Ukrajini na reki Dneper zadrževal 19 kubičnih kilometrov ali za skoraj pet Tržaških zalivov vode, so obsežni deli pokrajine še vedno poplavljeni, več deset tisoč ljudi pa razseljenih. V tokratni Frekvenci X pri strokovnjakih za visoke vodne pregrade preverjamo, kako zahteven gradbeni podvig so jezovi in katere porušitve jezov so odmevale v zgodovini. Posvetimo pa se tudi nekaterim največjim orjakom med jezovi na svetu.


08.06.2023

Ko se izštekamo ...

Uživanje na glasbenih koncertih ima svoje čare, občutka avtentične interakcije ne more nadomestiti nobena tehnologija. Živi glasbeni performansi nas močno pritegnejo, tako pri nastopajočih kot pri publiki sprožijo posebne občutke. Kaj se takrat dogaja v naših možganih, kako na nas vpliva učinek množice, kakšni muzikološki momenti nas prepričajo in zakaj je ubiranje “izštekanih” poti tako privlačno.


01.06.2023

Znanost v maju: O otroku treh staršev, frontotemporalni demenci in Znanosti na cesti

V prvi junijski Frekvenci X se oziramo v maj, ko je odmevalo rojstvo otroka, ki nosi DNK treh oseb. Pri dveh pomembnih svetovnih študijah so sodelovali tudi slovenski znanstveniki – v prvi o proteinu FUS, ki je eden od ključnih dejavnikov za nastanek frontotemporalne demence, v drugi pa o tem, da lahko ženske prekinejo hormonsko terapijo pri zdravljenju raka dojk z namenom zanositve in po porodu spet nadaljujejo z njo. Spoznamo tudi aktualnega mentorja leta, gostujoča urednica in gostja pa je tokrat dr. Saša Novak, komunikatorica znanosti 2022 in gonilno srce projekta Znanost na cesti, ki že deset let povezuje javnost z znanostjo.


25.05.2023

Pogovoriti se moramo o ChatGPT-ju (celotna okrogla miza)

Celoten posnetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X.


25.05.2023

Pogovoriti se moramo o ChatGPT-ju

Povzetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X. ChatGPT je kot jezikovni model že osvojil jezikovne bravure človeškega sporazumevanja in prebral nesluteno količino vsega, kar se skriva na svetovnem spletu, a strokovnjake vse bolj bega, simptom česa je brbotanje umetne inteligence v globinah. Ne gre le za vprašanja, katere poklice in dejavnosti vse bo umetna inteligenca v prihodnosti nadomestila, nadgradila, olajšala ali izpodrinila ter kako nam bo v pomoč na skoraj vseh področjih, pač pa za negotovost, česa vsega bo še sposobna, a se nam o tem danes še sanja ne. Kako bo zakoličila prihodnost in kako se bomo v novih okoliščinah znašli mi, ljudje? Kaj bo z vrednotami modrosti, učenja in intelektualnega napredka, v kakšno valuto se bo prelevilo znanje in kako se bo na to pripravil izobraževalni sistem?


11.05.2023

Evropo so nekoč poseljevali temnopolti in modrooki ljudje

Ste vedeli, da so lahko geni zelo zgovoren vodnik po davni zgodovini? No, vsaj postali so, zdaj, ko jih zmoremo neznansko hitro in učinkovito odčitavati. V samo nekaj letih so raziskovalci na tem področju prečesali 20 000 pradavnih genomov in odkrili marsikaj presenetljivega o naši davni preteklosti.


04.05.2023

Po poteh mrtvih in o zgodovini žensk v tranzicijskih obdobjih

Vloga mrtvih v življenju posameznikov v sodobni družbi in Povojne tranzicije v perspektivi spola – primer severovzhodnega jadranskega prostora sta dve raziskovalni temi, ki so ju izbrali pri prestižnem projektu Evropskega raziskovalnega sveta ERC. Omenjena glavna evropska organizacija s financiranjem pomaga vrhunskim znanstvenikom pri raziskovanju določene teme, ki v znanstvenem svetu še ni bila obravnavana. Za svojo originalnost sta bili nagrajeni profesorica Mirjam Mencej z oddelka za etnologijo in kulturno antropologijo in profesorica Marta Verginella z oddelka za zgodovino, obe delujeta na ljubljanski filozofski fakulteti. Govorita o tem, kakšen raziskovalni zagon jima je dal projekt, kaj pravzaprav raziskujeta in kako težko je pridobiti financiranje projekta ERC.


20.04.2023

Kmetijstvo prihodnosti, 3. del: Robotski sesalniki gnoja, molzni roboti in prihodnost natisnjenih zrezkov

V tretjem delu serije Kmetijstvo prihodnosti se prepričamo, da krave in roboti zelo dobro sobivajo in sodelujejo. V moderni živinoreji je raba robotskih sesalnikov gnoja in molznih robotov zelo napredovala, živali se bolje počutijo, manjši pa je tudi okoljski vpliv. Glede živinoreje ostaja odprtih več vprašanj: kako močno v resnici reja živali obremenjuje okolje, kaj bi lahko dosegli s spremembo prehranjevalnih navad in ali prihodnost prinaša umetno meso? Ob koncu tudi izdelamo zrezek s 3D-tiskanjem.


13.04.2023

Kmetijstvo prihodnosti, 2. del: Rastlinjaki pod nadzorom umetne inteligence in podzemni vrtovi

V drugem delu serije Kmetijstvo prihodnosti se sprašujemo, kako se spreminjajo načini pridelovanja zelenjave. Sprehodimo se po enem najmodernejših rastlinjakov v Sloveniji, kjer rast desettisočev glav solat nadzoruje umetna inteligenca in kjer so pogoji za rast natančno določeni. Razmišljamo o tem, kje je smiselno postavljati rastlinjake in kako moramo spreminjati bolj klasične postopke talne rasti, hkrati pa ugotavljamo, ali so urbane vertikalne farme le modna muha ali tehnologija prihodnosti. Poskusimo pa tudi vesoljski paradižnik.


Stran 3 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov