Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Temna energija - dr. Sean Carroll

30.05.2013


Je največja skrivnost v vesolju ter največja zadrega in glavobol današnjih fizikov. Je najmočnejša sila v vesolju, ki bo določila tudi njegov konec, vendar nihče ne ve, kaj je. Verjetno si marsikdo misli, da je dandanes, v svetu močno napredne tehnologije in znanosti, večji del narave že zdavnaj pojasnjen in odkritih že večina naravnih zakonov.

Ampak resnična slika je daleč od tega in znanstveniki zdaj dobesedno ne vedo, kaj predstavlja večino, ali natančneje, 70 odstotkov našega vesolja.

Vse, kar vedo o tem delu našega kozmosa, je to, da je nekakšna sila, ki vesolje vleče narazen. Temna energija je torej nadvse primerno ime za to skrivnostno entiteto. Vse se je začelo, ko sta se mednarodni skupini raziskovalcev pred približno trinajstimi leti lotili bolj ali manj rutinske raziskave.

Znanstveniki so namreč skušali narediti zelo natančno meritev ene temeljnih fizikalno-astronomskih konstant, njihova nepompozna študija pa je na koncu postavila na glavo celotno moderno kozmologijo in fizikom zastavila hudo zapleteno vprašanje. Astronomi Adam Riess, Brian Schmidt in Saul Perlmutter, ki so leta 2011 za to svoje delo prejeli Nobelovo nagrado, so namreč želeli določiti, s kakšno hitrostjo se naše vesolje širi, pri tem pa so merili svetlobo posebne vrste zvezd, znane kot supernova.

“The good news is that we know what 5 % of the universe is made of!” Interview with @seanmcarroll 202.tw/170tYtd #FX

— Matej Praprotnik (@praprotnix) May 28, 2013

Ko so preučili rezultate meritev, so pretreseni ugotovili, da se, v nasprotju z dotedanjim prepričanjem, vesolje širi pospešeno. To pa je pomenilo, da mora v vesolju obstajati neka neznana odbojna elementarna sila, ki je prej še nihče ni opazil. Nadaljnji izračuni vsote vse mase in energije v vesolju so pokazali, da je ta energija kar 70 odstotkov vsega kozmosa. Naše vesolje torej obvladuje skrivnostna temna sila in znanstveniki že več kot deset let na vse pretege razglabljajo, kaj bi le-ta lahko bila, a do zdaj jim še ni uspelo najti nobene res prepričljive razlage. Najprej so pomislili na to, da sam prazen prostor med zvezdami oziroma vakuum ustvarja to silo.

Čeprav se to sliši zelo nenavadno, pa teorija kvantne mehanike pravi, da v vakuumu iz nič nastajajo in izginjajo osnovni delci materije, zato pa vakuum v resnici ni popolnoma prazen, ampak ima določeno energijo. Ampak ko so fiziki izračunali energijo vakuuma in jo primerjali z močjo temne energije, so ugotovili, da njihovi teoretični izračuni vakuumu pripisujejo daleč previsoko energijo, kar 120 velikostnih redov preveliko. Za to neujemanje pravijo, da je najslabša teoretična napoved v zgodovini fizike, in so mu nadeli vzdevek vakuumska katastrofa.

Druga mogoča razlaga temne energije pa pravi, da v vesolju obstaja še eno, peto temeljno energijsko polje, podobno kot denimo elektromagnetno. Tudi s to razlago imajo fiziki celo kopico težav in je nikakor ne morejo uskladiti z eksperimentalnimi meritvami temne energije. Za marsikoga je temna energija zato največji izziv moderne fizike, za katerega kaže, da se spretno izmika vsakemu poskusu razlage. Raziskovalci zato dostikrat posežejo tudi po eksotičnih razlagah, ki se včasih zdijo kot obupni poskusi izhoda iz labirinta.

Tako so med drugim ugotavljali, da je temna energija posledica orjaških magnetnih polj, ki vladajo nad vesoljem, ali pa da gravitacija na velikih razdaljah deluje odbojno. Nekateri celo menijo, da je mogoče naš del vesolja v gigantski praznini sicer bolj poseljenega kozmosa, to pa je povsem v nasprotju s sedanjimi prepričanji v fiziki. Od narave temne energije je odvisna tudi usoda našega vesolja. Če bo njena moč v prihodnosti ostala enaka, se bo čez milijone let vesolje tako razširilo, da bo naša galaksija ostala v tako rekoč neskončni praznini, povsem izolirana od preostanka vesolja. Če bo moč temne energije narastla, pa vesolje čaka konec v tako imenovanem »velikem trganju«, ko bo ta energija narazen raztrgala vse, od galaksij, zvezd, planetov in celo samih atomov.

Mogoče pa se bo njena moč začela zmanjševati in se bo vesolje začelo sesedati vase. A ker temne energije ne poznamo dovolj dobro, fiziki preprosto ne vedo, kateri izmed teh scenarijev je pravilen. Ena izmed težav pri temni energiji je ta, da je znanstveniki ne morejo neposredno meriti oziroma detektirati, ampak lahko samo opazujejo njene učinke v vesolju. Zato so oči astronomov napeto obrnjene v nebo in v prihodnosti se bo začelo nekaj obsežnih raziskav, s katerimi bodo znanstveniki poskušali prodreti globlje v skrivnosti temne energije. Zdaj pa smo tam, ko nas temna energija še uči ponižnosti v našem neznanju in nepoznavanju še vedno skrivnostnega vesolja.

————–

INTERVJU: Dr. Sean Carroll, Kalifornijski inštitut za tehnologijo (Caltech). Intervju so pomagali prevajati poslušalci oddaje Frekvenca X. Oglejte si tudi potek prevajanja in transkript pogovora v angleščini.

Sliši se skoraj neverjetno, da za 70 odstotkov našega vesolja ne vemo, kaj je. Ali to za fizike ne pomeni vsaj majhne zadrege?

Veste, menim, da ne bi smelo biti zadrege. Kar malo smo razvajeni od znanstvenega napredka. Dobra novica je, da za 5 odstotkov vesolja vemo, iz česa je sestavljeno. Kar dobro ga razumemo in če za hip pomislite, s tem govorimo o vsem vesolju. Pred 100 leti nismo ničesar vedeli o širjenju vesolja, o temni snovi, temni energiji in podobnem. Mislim, da imamo kar nekaj razlogov, da smo ponosni na svoj napredek.

Koliko smo prepričani, da temna energija res obstaja? Je res izključeno, da bi bilo to samo iluzija zaradi kakšne napake pri astronomskih meritvah?

Dve možnosti sta za to, da temna energija ne obstaja. Prva je ta, da gre za napako pri opazovanju, in ta je bolj ali manj izključena. Imamo namreč več kot le en dokaz o obstoju temne energije. Tu je opazovanje supernov, razporejenosti galaksij in sevanja ozadja iz velikega poka. Vse daje popolnoma enak rezultat. Nismo pa čisto prepričani, da vse to najbolje razloži temna energija. Za te podatke bi bila možna tudi drugačna razlaga, na primer spremenjeno delovanje gravitacije na kozmoloških razdaljah. Ta hip je temna energija brez dvoma najboljša kandidatka za razlago, raziskujemo pa tudi druge možnosti.

Zakaj je izvor temne energije tako težko pojasniti? Človek bi si predstavljal, da bodo fiziki v teh desetih letih že zdavnaj našli razlago za ta pojav. Kako blizu odgovora smo danes?

Treba je poudariti, da že imamo zelo dobro razlago oziroma teorijo o tem, kaj bi lahko bila temna energija. Imenuje se kozmološka konstanta oziroma energija vakuuma. Vpeljal jo je že Einstein leta 1917. Težava z energijo vakuuma oziroma kozmološko konstanto ni to, da smo presenečeni, ker obstaja. Presenečeni smo, ker je tako šibka. Energija vakuuma je energija praznega prostora in ko se fiziki usedejo, da bi teoretično ocenili, koliko energije bi moralo obstajati v praznem prostoru, dobijo velikansko številko. Skrivnost je, zakaj je v naravi številka tako majhna. A dokler je tako majhna, se popolnoma ujema s podatki. Smo pa zelo pazljivi, da tega ne razumemo kot dokončno. Samo to, da imamo teorijo, ki deluje, še ne pomeni nujno, da je prava. Zato preučujemo vse možnosti, na katere lahko pomislimo.

Kaj pa vi osebno mislite, da je temna energija?

Menim, da se bo na koncu energija vakuuma izkazala za pravo razlago. Gre za to, da če vzamemo majhno točko v vesolju in jo popolnoma izpraznimo, tako da v njej ni več nobene materije, nobenega sevanja, nobene temne snovi ali česar koli drugega, dobimo popolnoma prazno območje. Pri tem se postavlja vprašanje: koliko energije je v tem delčku vesolja? Človek bi pomislil, da je odgovor nič − ker na tem območju ni ničesar, je preprosto prazen. A po Einsteinovi relativnostni teoriji, ki določa delovanje gravitacije v vesolju, obstaja število oziroma naravna konstanta vesolja, ki pove, koliko energije ima prazen prostor. Vse kaže, da nam je to število uspelo izmeriti. To vemo iz enega samega razloga: deluje namreč na prostor – čas. Vpliva na raztezanje vesolja in njegovo pospeševanje, kot smo odkrili s teleskopi.

Si upate napovedati, kdaj bodo znanstveniki končno pojasnili to skrivnostno silo?

V tem trenutku skušamo ločiti med različnimi možnimi teorijami. Ne gre torej za to, da jih ne bi imeli. Veliko jih je. Raziskujemo, katera bi bila lahko prava. Če je misel o energiji vakuuma prava, lahko z njo zelo specifično predvidevamo, kako se je vesolje razvijalo v času. Če pa gre za nekaj drugega, nekaj, kar ni absolutno konstantno, če gre za obliko energije, ki se s širjenjem vesolja počasi spreminja, bo opazovanje naših teleskopov rahlo drugačno. Zato poskušamo razviti čim natančnejše teleskope in zbrati toliko podatkov, kolikor se le da, da bi laže ugotovili, katera izmed možnih rešitev na mizi je prava.

Ali mislite, da bi lahko dokončna pojasnitev temne energije pomenila tudi kakšno tehnološko uporabo, na primer vesoljski pogon na temno energijo?

Žal mi je, da moram to reči, a mislim, da temna energija nima koristi za nobeno vrsto tehnologije. Temna energija je najmanjša možna količina energije, kar jih prostor lahko ima. Če hočemo zgraditi vesoljsko plovilo in prepotovati vesolje, bomo v ladji potrebovali večjo količino energije kot zunaj nje. In nekaj mora tu delovati kot pogon. To pa temna energija ne bi mogla biti. Mislim, da je povezava veliko bolj posredna. Bolj bomo razumeli temeljno fiziko in zakone narave, več pametnih zamisli bomo lahko imeli glede tega, kako pridobljeno znanje uporabiti pri tehnologiji.


Frekvenca X

683 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Temna energija - dr. Sean Carroll

30.05.2013


Je največja skrivnost v vesolju ter največja zadrega in glavobol današnjih fizikov. Je najmočnejša sila v vesolju, ki bo določila tudi njegov konec, vendar nihče ne ve, kaj je. Verjetno si marsikdo misli, da je dandanes, v svetu močno napredne tehnologije in znanosti, večji del narave že zdavnaj pojasnjen in odkritih že večina naravnih zakonov.

Ampak resnična slika je daleč od tega in znanstveniki zdaj dobesedno ne vedo, kaj predstavlja večino, ali natančneje, 70 odstotkov našega vesolja.

Vse, kar vedo o tem delu našega kozmosa, je to, da je nekakšna sila, ki vesolje vleče narazen. Temna energija je torej nadvse primerno ime za to skrivnostno entiteto. Vse se je začelo, ko sta se mednarodni skupini raziskovalcev pred približno trinajstimi leti lotili bolj ali manj rutinske raziskave.

Znanstveniki so namreč skušali narediti zelo natančno meritev ene temeljnih fizikalno-astronomskih konstant, njihova nepompozna študija pa je na koncu postavila na glavo celotno moderno kozmologijo in fizikom zastavila hudo zapleteno vprašanje. Astronomi Adam Riess, Brian Schmidt in Saul Perlmutter, ki so leta 2011 za to svoje delo prejeli Nobelovo nagrado, so namreč želeli določiti, s kakšno hitrostjo se naše vesolje širi, pri tem pa so merili svetlobo posebne vrste zvezd, znane kot supernova.

“The good news is that we know what 5 % of the universe is made of!” Interview with @seanmcarroll 202.tw/170tYtd #FX

— Matej Praprotnik (@praprotnix) May 28, 2013

Ko so preučili rezultate meritev, so pretreseni ugotovili, da se, v nasprotju z dotedanjim prepričanjem, vesolje širi pospešeno. To pa je pomenilo, da mora v vesolju obstajati neka neznana odbojna elementarna sila, ki je prej še nihče ni opazil. Nadaljnji izračuni vsote vse mase in energije v vesolju so pokazali, da je ta energija kar 70 odstotkov vsega kozmosa. Naše vesolje torej obvladuje skrivnostna temna sila in znanstveniki že več kot deset let na vse pretege razglabljajo, kaj bi le-ta lahko bila, a do zdaj jim še ni uspelo najti nobene res prepričljive razlage. Najprej so pomislili na to, da sam prazen prostor med zvezdami oziroma vakuum ustvarja to silo.

Čeprav se to sliši zelo nenavadno, pa teorija kvantne mehanike pravi, da v vakuumu iz nič nastajajo in izginjajo osnovni delci materije, zato pa vakuum v resnici ni popolnoma prazen, ampak ima določeno energijo. Ampak ko so fiziki izračunali energijo vakuuma in jo primerjali z močjo temne energije, so ugotovili, da njihovi teoretični izračuni vakuumu pripisujejo daleč previsoko energijo, kar 120 velikostnih redov preveliko. Za to neujemanje pravijo, da je najslabša teoretična napoved v zgodovini fizike, in so mu nadeli vzdevek vakuumska katastrofa.

Druga mogoča razlaga temne energije pa pravi, da v vesolju obstaja še eno, peto temeljno energijsko polje, podobno kot denimo elektromagnetno. Tudi s to razlago imajo fiziki celo kopico težav in je nikakor ne morejo uskladiti z eksperimentalnimi meritvami temne energije. Za marsikoga je temna energija zato največji izziv moderne fizike, za katerega kaže, da se spretno izmika vsakemu poskusu razlage. Raziskovalci zato dostikrat posežejo tudi po eksotičnih razlagah, ki se včasih zdijo kot obupni poskusi izhoda iz labirinta.

Tako so med drugim ugotavljali, da je temna energija posledica orjaških magnetnih polj, ki vladajo nad vesoljem, ali pa da gravitacija na velikih razdaljah deluje odbojno. Nekateri celo menijo, da je mogoče naš del vesolja v gigantski praznini sicer bolj poseljenega kozmosa, to pa je povsem v nasprotju s sedanjimi prepričanji v fiziki. Od narave temne energije je odvisna tudi usoda našega vesolja. Če bo njena moč v prihodnosti ostala enaka, se bo čez milijone let vesolje tako razširilo, da bo naša galaksija ostala v tako rekoč neskončni praznini, povsem izolirana od preostanka vesolja. Če bo moč temne energije narastla, pa vesolje čaka konec v tako imenovanem »velikem trganju«, ko bo ta energija narazen raztrgala vse, od galaksij, zvezd, planetov in celo samih atomov.

Mogoče pa se bo njena moč začela zmanjševati in se bo vesolje začelo sesedati vase. A ker temne energije ne poznamo dovolj dobro, fiziki preprosto ne vedo, kateri izmed teh scenarijev je pravilen. Ena izmed težav pri temni energiji je ta, da je znanstveniki ne morejo neposredno meriti oziroma detektirati, ampak lahko samo opazujejo njene učinke v vesolju. Zato so oči astronomov napeto obrnjene v nebo in v prihodnosti se bo začelo nekaj obsežnih raziskav, s katerimi bodo znanstveniki poskušali prodreti globlje v skrivnosti temne energije. Zdaj pa smo tam, ko nas temna energija še uči ponižnosti v našem neznanju in nepoznavanju še vedno skrivnostnega vesolja.

————–

INTERVJU: Dr. Sean Carroll, Kalifornijski inštitut za tehnologijo (Caltech). Intervju so pomagali prevajati poslušalci oddaje Frekvenca X. Oglejte si tudi potek prevajanja in transkript pogovora v angleščini.

Sliši se skoraj neverjetno, da za 70 odstotkov našega vesolja ne vemo, kaj je. Ali to za fizike ne pomeni vsaj majhne zadrege?

Veste, menim, da ne bi smelo biti zadrege. Kar malo smo razvajeni od znanstvenega napredka. Dobra novica je, da za 5 odstotkov vesolja vemo, iz česa je sestavljeno. Kar dobro ga razumemo in če za hip pomislite, s tem govorimo o vsem vesolju. Pred 100 leti nismo ničesar vedeli o širjenju vesolja, o temni snovi, temni energiji in podobnem. Mislim, da imamo kar nekaj razlogov, da smo ponosni na svoj napredek.

Koliko smo prepričani, da temna energija res obstaja? Je res izključeno, da bi bilo to samo iluzija zaradi kakšne napake pri astronomskih meritvah?

Dve možnosti sta za to, da temna energija ne obstaja. Prva je ta, da gre za napako pri opazovanju, in ta je bolj ali manj izključena. Imamo namreč več kot le en dokaz o obstoju temne energije. Tu je opazovanje supernov, razporejenosti galaksij in sevanja ozadja iz velikega poka. Vse daje popolnoma enak rezultat. Nismo pa čisto prepričani, da vse to najbolje razloži temna energija. Za te podatke bi bila možna tudi drugačna razlaga, na primer spremenjeno delovanje gravitacije na kozmoloških razdaljah. Ta hip je temna energija brez dvoma najboljša kandidatka za razlago, raziskujemo pa tudi druge možnosti.

Zakaj je izvor temne energije tako težko pojasniti? Človek bi si predstavljal, da bodo fiziki v teh desetih letih že zdavnaj našli razlago za ta pojav. Kako blizu odgovora smo danes?

Treba je poudariti, da že imamo zelo dobro razlago oziroma teorijo o tem, kaj bi lahko bila temna energija. Imenuje se kozmološka konstanta oziroma energija vakuuma. Vpeljal jo je že Einstein leta 1917. Težava z energijo vakuuma oziroma kozmološko konstanto ni to, da smo presenečeni, ker obstaja. Presenečeni smo, ker je tako šibka. Energija vakuuma je energija praznega prostora in ko se fiziki usedejo, da bi teoretično ocenili, koliko energije bi moralo obstajati v praznem prostoru, dobijo velikansko številko. Skrivnost je, zakaj je v naravi številka tako majhna. A dokler je tako majhna, se popolnoma ujema s podatki. Smo pa zelo pazljivi, da tega ne razumemo kot dokončno. Samo to, da imamo teorijo, ki deluje, še ne pomeni nujno, da je prava. Zato preučujemo vse možnosti, na katere lahko pomislimo.

Kaj pa vi osebno mislite, da je temna energija?

Menim, da se bo na koncu energija vakuuma izkazala za pravo razlago. Gre za to, da če vzamemo majhno točko v vesolju in jo popolnoma izpraznimo, tako da v njej ni več nobene materije, nobenega sevanja, nobene temne snovi ali česar koli drugega, dobimo popolnoma prazno območje. Pri tem se postavlja vprašanje: koliko energije je v tem delčku vesolja? Človek bi pomislil, da je odgovor nič − ker na tem območju ni ničesar, je preprosto prazen. A po Einsteinovi relativnostni teoriji, ki določa delovanje gravitacije v vesolju, obstaja število oziroma naravna konstanta vesolja, ki pove, koliko energije ima prazen prostor. Vse kaže, da nam je to število uspelo izmeriti. To vemo iz enega samega razloga: deluje namreč na prostor – čas. Vpliva na raztezanje vesolja in njegovo pospeševanje, kot smo odkrili s teleskopi.

Si upate napovedati, kdaj bodo znanstveniki končno pojasnili to skrivnostno silo?

V tem trenutku skušamo ločiti med različnimi možnimi teorijami. Ne gre torej za to, da jih ne bi imeli. Veliko jih je. Raziskujemo, katera bi bila lahko prava. Če je misel o energiji vakuuma prava, lahko z njo zelo specifično predvidevamo, kako se je vesolje razvijalo v času. Če pa gre za nekaj drugega, nekaj, kar ni absolutno konstantno, če gre za obliko energije, ki se s širjenjem vesolja počasi spreminja, bo opazovanje naših teleskopov rahlo drugačno. Zato poskušamo razviti čim natančnejše teleskope in zbrati toliko podatkov, kolikor se le da, da bi laže ugotovili, katera izmed možnih rešitev na mizi je prava.

Ali mislite, da bi lahko dokončna pojasnitev temne energije pomenila tudi kakšno tehnološko uporabo, na primer vesoljski pogon na temno energijo?

Žal mi je, da moram to reči, a mislim, da temna energija nima koristi za nobeno vrsto tehnologije. Temna energija je najmanjša možna količina energije, kar jih prostor lahko ima. Če hočemo zgraditi vesoljsko plovilo in prepotovati vesolje, bomo v ladji potrebovali večjo količino energije kot zunaj nje. In nekaj mora tu delovati kot pogon. To pa temna energija ne bi mogla biti. Mislim, da je povezava veliko bolj posredna. Bolj bomo razumeli temeljno fiziko in zakone narave, več pametnih zamisli bomo lahko imeli glede tega, kako pridobljeno znanje uporabiti pri tehnologiji.


14.03.2019

Vse živo 3: Neverjetni mikrobi

So pravi gospodar in stric v ozadju našega planeta mikrobi? Več milijard let so imeli Zemljo sami zase in poganjajo vse ključne procese na Zemlji, celo padavine. Poseljujejo najbolj ekstremne dele planeta, živijo v nas, in to v velikanskih številkah, po eni od teorij naj bi bili prav mikrobi prišleki z drugega planeta. Nič na njih ni mikro, le ime. V tretji epizodi serije Vse živo se s sogovorniki dotikamo nekaterih trenutno najbolj vročih področij raziskovanja mikroorganizmov. Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


07.03.2019

Vse živo 2: Rajskega vrta ni več

Na Zemlji poteka šesto veliko izumiranje vrst, ki smo ga povzročili sami. Na planetu naj bi bilo ogroženih 70 odstotkov vseh vrst, v naslednjih 30 letih jih bo izumrla petina. Vsako minuto posekamo, zažgemo ali kako drugače uničimo okrog sto hektarov gozda, prav tako smo že izgubili tri četrtine genetske raznolikosti kulturnih rastlin, ki smo jih sicer nekoč sami vzgojili. Rajskega vrta ni več, opozarjata avtorja druge epizode serije Vse živo dr. Matjaž Gregorič in Maja Ratej.


28.02.2019

Vse živo 1/5: V iskanju zgodbe življenja

Kako staro je življenje na Zemlji? Kdaj se je zgodil tisti trenutek, ko je kemija milijarde let nazaj sredi neprijazne pustinje našega planeta prešla v biologijo? V novi seriji Frekvence X »Vse živo« bomo na sledi življenju na planetu … Odstirali bomo zgodbo o neverjetni raznolikosti, boju, vztrajnosti in fantastični ustvarjalnosti narave okrog nas. In kje v vsem tem je človek, je človek res krona stvarstva?


21.02.2019

Snežak v vesolju

Najprej so domnevali, da ima obliko keglja ali arašida, zdaj so znanstveniki potrdili, da gre pravzaprav za snežaka. Zamrznjeni ostanek iz časa zgodnjega Osončja, poimenovan Ultima Thule, se nahaja kar 6,4 milijarde kilometrov od Zemlje. Gre za najbolj oddaljeno nebesno telo, kar jih človeštvo kadarkoli preučevalo. “Gremo, Nova obzorja!” je na letošnjega novega leta dan zgodaj zjutraj vzkliknil Alan Stern, glavni inženir Nasine sonde New Horizons. Doktor astrofizike in član legendarne zasedbe Queen Brian May pa je zgodovinskem dogodku posvetil prav posebno pesem. Kako astrofiziki razlagajo pojav snežaka v vesolju in kaj bi lahko ugotovili na podlagi pridobljenih podatkov? Gost: dr. Tomaž Zwitter, profesor astrofizike Avtor: Luka Hvalc Foto: Nasa


14.02.2019

150 let periodnega sistema elementov

Legenda pravi, da je ruski znanstvenik Dmitri Mendelejev pred 150 leti idejo zanj dobil v sanjah. Periodni sistem elementov je do danes postal eden najbolj prepoznavnih grafičnih simbolov znanosti. Ob prvi predstavitvi je bilo na njem 61 elementov, danes jih je 118, periodni sistem pa je še vedno povsem enako uporaben. O njegovi zgodovini, odkrivanju novih elementov in tudi o tem, kako se je periodni sistem preselil tudi v popkulturo se v Frekvenci X pogovarjamo z navdušenci, ki periodni sistem nosijo v denarnici, ga imajo odtisnjenega na skodelici ali o njem že celo desetletje snemajo video vsebine. Gosta: Dr. Martyn Poliakoff, Univerza v Nottinghamu (VB); Dr. Iztok Turel, ljubljanska Fakulteta za kemijo in kemijsko tehnologijo Avtorja oddaje: Jan Grilc in dr. Matej Huš


07.02.2019

Dr Prihodnost 5/5: Pogodba za večno življenje

Ljudje od nekdaj iščemo eliksir večne mladosti, ki bi nam zagotovil večno življenje. Če je bogovom to izredno dobro uspevalo, pa so ljudje ostali večni le v svojih dejanjih in na papirju. Morda pa se bo tudi to kmalu spremenilo. V 21. stoletju kot naslednjo veliko tehnologijo napovedujejo ravno podaljšanje človekovega življenja v večnost. Kakšen pa bi bil svet, če bi vsi živeli večno? Kako bi na svetu preživela preštevilna populacija, kje bi živela, kdo bi jo prehranil? Je večno življenje zidanje gradov v oblakih ali realna možnost? Nekaj odgovorov smo poiskali na novogoriški gimnaziji. Sogovorniki: profesor filozofije Sandi Cvek doktorska študentka biomedicine Mojca Justin upokojenka Marija Jelen dijaki Gimnazije Nova Gorica – Anja, Borja in Klemen soustanoviteljica podjetja za krioniko Alcor Linda Chamberlain dr. Zvonka Zupanič Slavec, Inštitut za zgodovino medicine Serijo Frekvence X Ordinacija dr. Prihodnost je pripravila Maja Stepančič.


31.01.2019

Dr. Prihodnost 4/5: Bolezni iz kovčka

Vsak dan z letalom potuje 11 milijonov ljudi, to je toliko, kot ima prebivalcev Grčija. Pomislimo, koliko vrst bolezni bi nosili in delili po svetu, če bi potovali neodgovorno. Lani je na letalu iz Dubaja v New York zavladala panika, kašljajo in bruhalo je kar sto ljudi. Po pristanku so jih zadržali v karanteni in pregledali na letalu, na srečo jih je zares zbolelo le 11. In to ne za kakšno eksotično boleznijo, ampak za gripo. Naš sogovornik je v kovčku z rajske plaže v Venezueli v Slovenijo prinesel mušice puri-puri. Ko je doma odprl kovček, so mušice zletele iz kovčka. Kaj bi se zgodilo, če bi bile okužene? Bolezni pa ne prinašamo samo domov, ampak jih tudi odnašamo v druge kraje. Že britanski raziskovalec James Cook je s svojo posadko leta 1778 na Havaje prinesel gripo, tuberkulozo, sifilis … In z njimi smrt za številne avtohtone prebivalce.Raziskujemo izzive, ki jih za naše zdravje prinašata sodoben način življenja in mobilnost. Kaj za razvoj starih in novih bolezni pomenijo hitre podnebne spremembe, kako lahko z genetskimi manipulacijami (na primer malaričnega komarja) uničimo nalezljive bolezni in kakšne so lahko posledice za naš ekosistem. Že če recimo iz Indonezije prinesete odmrle korale ali na domačem vrtu posadite semena manga iz Tajske, lahko ob slabem scenariju to pomeni, da ste domov prinesli tudi virusno, bakterijsko ali glivično okužbo, ki se lahko v našem okolju tudi razmnoži. Bo čez 30 let gensko spreminjanje organizmov nekaj popolnoma vsakdanjega? Ali morda bolezni sploh ne bomo več zdravili, ampak jih bomo iztrebili, še preden bi lahko preskočile na človeka? Kako bo z epidemijami? Kaj bo prinesel morebitni razmah vesoljskega turizma? Sogovorniki: -Dr. Tadeja Kotar, Sekcija za tropsko in potovalno medicino UKC Ljubljana -Dr. Tadej Malovrh, imunolog in strokovnjak za biovarnost z Veterinarske fakultete -Mojca Dolinar, klimatologinja na ARSO -Dr. Andrew Hammond, mikrobiolog na Imperial College London Serijo Ordinacija Dr. Prihodnost pripravlja Maja Stepančič.


24.01.2019

Dr. Prihodnost 3/5: Izzivi staranja

Do leta 2050 bo kar 35 odstotkov prebivalcev v Evropi starejših od 60 let, na svetu bo takrat živelo že več starostnikov kot otrok in mladostnikov. Staranje poteka zelo različno, nekdo je lahko še pri osemdesetih povsem aktiven in se primerja z zdravim tridesetletnikom. Na drugi strani imajo lahko že šestdesetletniki resne starostne težave. Za celično in telesno staranje velja, da gre pravzaprav za akumulacijo poškodb. Te težko nadziramo, medtem ko lahko imamo na primer poškodbe DNK vsaj delno pod kontrolo, recimo tako, da ne kadimo. Tudi možgane lahko v starosti ohranimo v dobri formi. Iščemo odgovore na izzive staranja: kako uspešno preprečevati visok krvni tlak v mladosti, da zaradi njega ne bo težav v starosti, kako lahko tehnologija pomaga pri okrevanju – denimo po možganski kapi, kakšne odgovore na staranje ponuja nevroznanost. Katere tehnološke in vsakodnevne malenkosti lahko človeku izboljšajo kakovost v starosti. V domu starejših v Šiški se srečamo z nekaj stanovalkami, mnoge so že na pragu devetdesetih. Navkljub napredujoči tehnologiji so prepričane, da toplega stiska roke in iskrenega nasmeška ne bo mogel nikoli nadomestiti robot. Pa imamo za naš planet starcev sploh kakšno resno alternativo? Sogovorniki so: sistemski biolog dr. Anže Županič dr. Maja Bresjanac, nevrobiologinja delovna terapevtka Katarina Galof dr. Jana Brguljan Hitij, vodja oddelka za hipertenzijo UKC Ljubljana vodja službe za raziskave in razvoj URI Soča dr. Zlatko Matjačić dr. Alan Antin, podjetje za raziskave tehnologij Gartner Serijo Frekvence X Ordinacija dr. Prihodnost pripravlja Maja Stepančič.


17.01.2019

Dr. Prihodnost 2/5: Krasni novi svet genetike

Aldous Huxley je že pred osemdesetimi leti v kultnem delu Krasni novi svet brez potrebnih tehnologij predvidel človekov vpliv na genski zapis. Branje, ki lahko sproža tudi nelagodje, je danes nujno za vnovično izpraševanje, kakšna družba postajamo. Bomo tako kot v knjigi vsi isti, a ne vsi enakopravni? So strahovi pred zlorabo genetike za ustvarjanje ljudi po meri realni ali pretirani? Na matematično in etično polje prihodnosti v 2. delu serije postavljamo gensko terapijo, celično terapijo, nanorobote in tehnologijo CRISPR. Izzive sodobne genetike nam predstavljajo: - dr. Roman Jerala - dr. Lenart Girandon - dr. Maja Čemažar Pri seciranju človeškega genoma nam pomaga strokovni sodelavec dr. Aleš Maver s kliničnega inštituta za medicinsko genetiko UKC Ljubljana, ki pravi, da je raziskovanje genoma razburljivo in da gre v resnici za detektivsko delo: v veliki knjižnici skušajo prepoznati ključne spremembe, ki povzročajo bolezni. Serijo Ordinacija dr. Prihodnost pripravlja Maja Stepančič. Dobrodošli v krasnem novem svetu genetike. In etike.


10.01.2019

Dr. Prihodnost 1/5: Ko na roki zraste nov nos

Scenarij za leto 2050 je lahko tudi takšen: vsi imamo modre oči in smo svetlolasi. V laboratorijih poleg elitnih posameznikov vzgajamo tudi organe, ki nam jih v telo uspešno presadijo roboti. Ti seveda za nas skrbijo v domovih za ostarele, kjer slavimo 100-letnico, ali pa smo morda že celo nesmrtni. Realnost ali fikcija? V Ordinaciji doktorice Prihodnost raziskujemo realne in futuristične možnosti za razmah medicine. V prvi epizodi spoznavamo izzive sodobne kirurgije. V Celju smo sodelovali pri robotski operaciji, se v Ljubljani srečali z ustvarjalcem nosov iz obstoječih tkiv ter se pogovarjali z nemškim zdravnikom, ki raziskuje možnosti presaditve živalskih organov v človeka. Sogovorniki: - Sandi Poteko, urolog, ki je izvedel že dva tisoč robotskih operacij - Dr. Uroš Ahčan, kirurg, ki je ustvaril nov nos iz kosti in mehkih tkiv - Dr. Bruno Reichart, srčni kirurg, ki je prvi v Nemčiji opravil presaditev srca - Prof. dr. Zvonka Zupanič Slavec, predstojnica Inštituta za zgodovino medicine Avtorica serije Ordinacija dr. Prihodnost je Maja Stepančič


03.01.2019

Znanstveni vrhovi 2018

V letu 2018 je človek drzno posegel na področja, kjer ni bil še nikoli … Od prelomne misije na Sonce do prvih gensko spremenjenih otrok, od naravnost neverjetnih korakov v medicini do razvozlane skrivnosti svetlobe. Otresli smo se prakilograma, odkrili tekočo vodo na Marsu in bili plat zvona za okolje. Trije novinarji, trije pogledi … in ena znanost 2018! Znanstveno leto 2018 komentirajo Maja Ratej, Jan Grilc in Aljoša Masten.


02.01.2019

Čas in prostor nista tisto, kar se zdita

Italijanski fizik in eden od najbolje prodajanih avtorjev na svetu Carlo Rovelli ponuja nov most med teorijo relativosti in kvantno mehaniko.


27.12.2018

Praznična znanost

Znanost je povsod. Tudi med prazniki. Zato poljudno-znanstvena ekipa Frekvence X tokratni podkast ustvarja ob popoldanskem čaju. V kuhinji pečemo praznične piškote in se čudimo, kako je vse skupaj ena sama velika kemijska reakcija, kjer odločilno vlogo igrajo temperatura in sestavine. In kakšna je vloga glutena? Med zavijanjem daril razmišljamo, kako velik psihološki učinek lahko ima lepo zavita škatla. Pomembnost okusno zavitega darila potrjujejo tudi raziskave. Ob pogledu na božično drevo pa prebiramo raziskave o genetiki novoletnih jelk in možnostih za njihovo kloniranje.


13.12.2018

Zbogom, prakilogram!

16. novembra letos so se članice mednarodnega urada za uteži in mere, tudi Slovenija, zbrale v Versaillesu na posebni misiji: spremeniti definicijo kilograma. Ta je bila namreč edina enota, ki je še slonela na fizičnem predmetu. V dobi, ko smo z eno nogo tako rekoč že skoraj stopili na Mars, je glavnina vseh naših meritev odvisna od nekega arhaičnega artefakta. Za marsikoga je bilo to absurdno. A najti novo pot do kilograma ni bilo niti najmanj enostavno – potrebna so bila desetletja dela in dve Nobelovi nagradi, da se bomo lahko z majem drugo leto vendarle poslovili od prakilograma. Pri vsej zgodbi, katere pisci sicer zatrjujejo, da se za nas ne bo nič spremenilo, pa nas vendarle najbolj zanima – nam bodo tehtnice morebiti pokazale kaj manj? Merski sistem se je končno osvobodil zemeljskih spon, saj bodo vse enote določene s fizikalno realnostjo, ne z nekimi predmeti, ki slučajno ležijo na majhnem vlažnem planetu, ki kroži okrog sila povprečne zvezde v odročnem rokavu ene izmed običajnih galaksij. Sogovornika: Dr. Gregor Geršak, Fakulteta za elektrotehniko v Ljubljani Goran Grgić, Urad RS za meroslovje Avtorji: Maja Ratej, dr. Matej Huš, Luka Hvalc


06.12.2018

Upor poražencev globalizacije

Vse bolj jasno postaja, da volivci Donalda Trumpa in vseh trumpov po svetu nikakor niso zavedeni, ampak se zelo dobro zavedajo, koga volijo in zakaj. Volilno podporo na prvi vtis ekscentričnim kandidatom, lahko primerjamo z metanjem granitnih kock v simbole oblasti. Gre za upor tako imenovanih poražencev globalizacije. Razmah populizma v ZDA in Evropi je svojevrsten upor proti različnim elitam. Dejstvo je, da živimo v negotovih časih, a vseeno: smo preveč optimistični, če mislimo, da je populizem vendarle že dosegel vrhunec in se bo umiril? Zakaj torej v vsaj statistično dobrih gospodarskih razmerah uspevajo Trump in trumpi? Kaj v resnici predstavlja brexit? Zakaj je bil zaradi protesta rumenih jopičev prisiljen popustiti francoski predsednik Emanuell Macron? Analizirata: -Politolog in politični analitik Ian Bremmer, Eurasia Group -Filozofinja dr. Alenka Zupančič, ZRC SAZU Avtorja: dr. Sašo Dolenc in Luka Hvalc


29.11.2018

Skrb za modri marmornati planet kar z domačega kavča

Pred skoraj petdesetimi leti – natančneje 24. decembra 1968 – je v vesolju nastala ena najvplivnejših fotografij Zemlje preteklega stoletja. Astronavti na Apollu 8 Frank Borman, Jim Lovell in Bill Anders so iz lunine orbite dobili čudovit posnetek Zemljine oble, ki ni pokazala samo to, kako krasen in svetel je ta modri marmorni planet, ampak tudi to, da v skoraj neskončnem vesolju nismo (mi) središče vsega. Takrat je bila fotografija iz vesolja nekaj revolucionarnega, danes pa fotografije Zemlje pridobivamo vsak dan. Ob pomoči podjetja Sinergise satelitski posnetki Zemlje omogočajo vsakemu, da pogleda na kakšno drugo celino in vidi, kakšne spremembe se dogajajo: presihajoča jezera, izginjajoči ledeniki, gozdovi, ki se krčijo zaradi pridobivanja palmovega olja … Od lepote našega planeta v preteklosti do skrbi zanj danes – tudi s satelitskimi posnetki, bosta govorila vodja podjetja Sinergise Grega Milčinski in profesor astronomije, astrofizike in kozmologije na Fakulteti za matematiko in fiziko dr. Tomaž Zwitter. Foto: NASA Goddard Space Flight Center (Flickr/Creative Commons)


22.11.2018

Reportaža: Znanstveni slam 2018

Saj poznate tisto Einsteinovo: “Če nečesa, kar počneš, ne znaš razložiti 6-letniku, tega tudi sam ne razumeš.” Prava umetnost zna biti nekaj zelo kompleksnega strniti v elegantno in lepo razumljivo celoto. Na Znanstvenem slamu 2018 je na inovativen način svoja raziskovalna dela predstavilo deset raziskovalcev. Od skrivnostnega življenja jezer do lepote paličnega mešalnika. Od moderne čistilke plazme do tlakovcev in simetrije.


15.11.2018

Mesta prihodnosti 5/5: Futurizem boljšega življenja

V Celju smo z gimnazijci razpravljali o mestih prihodnosti. Mladi razmišljajo, da bi promet v naslednjih desetletjih kazalo načrtovati pod zemljo in ne po zraku. Ker bo tako manj gneče in manj moteče za naravo. Kot zelo dobro alternativo vidijo urbano čebelarstvo, čebele nas lahko za prihodnost naučijo sodelovanja, nam pokažejo, kako lahko velika skupina v resnici deluje kot družina. Če bomo želeli živeti boljše, bomo morali stremeti k manj dražljajem, iskati manj hrupa, manj reklam. Le z minimalizmom in več umirjenosti bomo prihranili notranjo energijo za res pomembne stvari in uživali kakovostno življenje. "Daj, kolikor vzameš. In vse bo dobro," veli star maorski pregovor. Moč prevzemajo mesta in korporacije. Kaj se bo zgodilo, če mesta ne bodo več v interesu ljudi ampak kapitala? Nas lahko to čez 100 let pripelje v globalno diktaturo? Kakšna bodo v resnici mesta prihodnosti, kakšne metamorfoze urbanega okolja se obetajo? Katere vrednote bi morali ohraniti, kako poiskati še sprejemljivo ravnovesje med interesi kapitala in resničnimi potrebami ljudi, kako v širšo družbeno korist sinhronizirati umetno inteligenco in zdravo človeško pamet? Dobrodošli na poti naprej in nazaj v prihodnost! Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc, Maja Ratej. Sogovorniki: Dr. Theresa Cordova (Univerza v Chicagu), Dr. Marko Grobelnik (laboratorij za umetno inteligenco IJS), Petr Vorlik (Praška arhitekturna fakulteta), Maja Simoneti (Inštitut za politike prostora) dr. Blaž Vurnik (Mestni muzej Ljubljana), Roberta Marcaccio (DSDHA London), Dr. Gregor Papa (odsek za računalniške sisteme na IJS), dr. Christa Sommerer (intermedijska umetnica), Laura Gatti (krajinska arhitektka), Robert Muggah (Inštitut Igarape), Janez Dovč (fizik in glasbenik), dijaki Anej Kostrevc, Maj Mravlak, Katrin Kovač, Aleksander Breznikar, Jernej Lah, Nejc Drev in Mitja Suvajac (Gimnazija Celje – Center).


08.11.2018

Mesta prihodnosti 4/5: Tarok v prometu prihodnosti

Kam se bo preselil promet prihodnosti, kdo ali kaj nas bo vozil, kaj bomo počeli v futurističnih prevoznih sredstvih? Lahko da bomo po drugem tiru nekoč gradili še tretji pas, vzpostavili mestni letalski promet, bolje izkoristili vodo, morda pa je v urbanih okoljih kar kolo še najučinkovitejša rešitev. Med vožnjo z različnimi prevoznimi sredstvi sedanjosti iščemo nove poti do boljšega prometa in mobilnosti prihodnosti. Skozi okno prevelikega avtomobila opazujemo, kako so prevladujoči načini premikanja spremenili podobo naših mest, vplivali na gradnjo in zaznamovali lokalne identitete. Razmišljamo o realnih izboljšavah, iščemo primere dobre prakse. V mestni gneči sanjamo o igranju taroka v avtonomnih avtomobilih prihodnosti. Pri gasilcih preverjamo, kaj bi se z varnostnega vidika zgodilo, če bi na avtocesti trčilo več električnih avtomobilov. Zapeljemo se v največje slovensko krožišče, ki ga povsem upravlja umetna inteligenca. Ustavimo se v centru za nadzor semaforjev in se med iskanjem parkirišča strinjamo, da bodo v prometu večne zagotovo ostale le kletvice. Sogovorniki: Petr Vorlik (Praška arhitekturna fakulteta), Dr. Blaž Vurnik (Mestni muzej Ljubljana), Aleš Žibert (Center za upravljanje prometa Ljubljana), Vladimir Zadina (Smart Prague), Rok Magister (SAP), Roberta Marcaccio (DSDHA London), Dejan Perušek (Ljubljanska gasilska brigada), dr. Tadej Kosel (Fakulteta za strojništvo), Avtorji: Jan Grilc, dr. Dan Podjed, Luka Hvalc


01.11.2018

Protetik, ki si je želel postati agent FBI

Njegova dedek in babica sta v Sloveniji živela le sedem kilometrov narazen, spoznala pa sta se šele v Združenih državah Amerike. “V mestu Rutland je dedkova družina šla pogledat nove priseljence, med njimi je bila tudi mlada ženska – pozneje moja babica. Moj dedek je na srečanje prinesel barvne gumijaste bonbone in ji jih ponudil. Všeč so ji bile barve in družinska legenda pravi, da sta se zato tudi zaljubila,” pravi Terry Supan, protetik, ki si je pravzaprav želel postati agent FBI. V svoji petdesetletni karieri je nanizal ogromno uspehov na področju razvijanja čimboljših – tudi robotskih – protez, ki pri človeku nadomestijo zgornje in spodnje ekstremitete. Ob uspešni poklicni poti ima še uspešen – več kot štiri desetletja dolg zakon. Da je tako uspešen, se lahko zahvali tudi odličnemu vzoru babice in dedka, ki sta se po vsakem prepiru pogovorila in si povedala, da se imata rada. O kariernih poteh in družinskih vezeh pa v pogovoru z Majo Stepančič.


Stran 13 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov