Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Bo elektrika poganjala tudi potniška letala? Morda pa res

07.01.2016

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.

Raziskovalci Kemijskega inštituta so se podpisali pod prvo objavo v reviji Science

Številni se strinjajo, da bo med vsemi nujnimi pogoji za razvoj električnih vozil, ključno vlogo odigral predvsem napredek na področju baterijskih sistemov. Potem ko so zgodnji entuziasti še privolili v višje cene in krajšo obstojnost, bo vstop na širši trg zahteval več. Pa lahko to pričakujemo v kratkem?

“Smo sredi revolucije, zlasti na področju razvoja materialov za baterijske sisteme prihodnosti. Na to vplivajo tudi zelo veliki denarni vložki, ki jih temu področju namenjajo po vsem svetu. Obetamo si nove revolucionarne izboljšave, in to že v prihodnjih nekaj letih.”

To je Haresh Kamath z ameriškega neodvisnega in nevladnega  inštituta za raziskovanje električne energije, EPRI. Tudi Slovenci smo na področju razvoja akumulatorjev za električna vozila v svetovnem raziskovalnem vrhu.

Kot vemo, naša prihodnost s fosilnimi gorivi ni svetla. Človeštvo bo moralo najti nek nov način, kako ekonomično in učinkovito izrabljati energijo. Baterija je pač eden izmed tistih potencialov, ki je sposobna shranjevati vso energijo iz obnovljivih virov in zato se širom po svetu vlaga ogromno sredstev v ta področja, kar pomeni zelo veliko konkurenco in koncentracijo znanja.”

Pravi dr. Robert Dominko, ki se skupaj z ekipo svojih raziskovalcev in francoskimi sodelavci podpisuje pod objavo v prestižni reviji Science. Gre za prvo objavo kateregakoli raziskovalca s tega inštituta v tej reviji, poslušalci pa ste to ta teden nagradili tudi z izborom za Ime tedna.

Celotnemu pogovoru z dr. Dominkom lahko prisluhnete spodaj.

INTERVJU SI LAHKO PREBERETE TUDI SPODAJ:

Prof. Robert Dominko, nam lahko predstavite laboratorij, ki ga vodite?

Ko govorimo o sodobnih baterijskih sistemih, imamo v mislih nove sisteme z baterijami, ki imajo povečano energijsko gostoto. Preprosteje rečeno, to pomeni, da imamo v enaki prostornini in pri enaki masi shranjene veliko več energije. Delo v laboratoriju se deli na tri osnovna področja: eno je nadaljevanje dela z litijskoionskimi akumulatorji. Pri tem iščemo nove možnosti, kako povečati količino energije, shranjene v njih. Drugo težišče je delo z litijsko-žveplovimi akumulatorji v zvezi s širokimi evropskimi konzorciji v dveh evropskih projektih, ki jih koordiniramo mi. Pri litijsko-žveplovih akumulatorjih govorimo o veliko večji energijski gostoti za veliko nižjo ceno. Kot sem omenil, sodelujemo z velikim konzorcijem priznanih avtomobilskih proizvajalcev, kot so Renault, Volvo, Peugeot, in močnim evropskim proizvajalcem baterij Saft, francoskim podjetjem iz Bordeauxa. V projekt so vključeni še inštituti in univerze, od švedskih in finskih do izraelskih in španskih.

Je razvoj takih baterijskih sistemov eno od vodilnih področij kemijskega inštituta?

Lahko bi rekli, da je eno vodilnih. Kemijski inštitut je znan tudi po drugih področjih, predvsem na biopodročju imamo zelo uspešne znanstvenike, pa tudi na področju materialov, predvsem polimerov, se na evropski ravni uvrščamo precej visoko.

Kako vroča tema pa so trenutno baterijski sistemi v svetu? Kako raziskovalci tekmujejo med sabo, da bi se dokopali do čim zmogljivejših baterijskih sistemov?

Kot vemo, prihodnost fosilnih goriv ni svetla. Človeštvo bo moralo najti nov način, kako gospodarno in učinkovito porabljati energijo. Baterija je pač ena izmed možnosti, ki lahko shranjujejo vso energijo iz obnovljivih virov, zato se po svetu vlaga ogromno sredstev v ta področja. To pomeni zelo veliko konkurenco, koncentracijo znanja, hkrati pa to omogoča tudi nadaljnji razvoj. Pri tem je treba napredek in delo raziskovalnih skupin po svetu zelo budno spremljati ter njihova odkritja s pridom uporabljati, tako da – po domače povedano – ne zaostajaš za njimi. Sredstva, ki jih v posameznih državah namenjajo za to, so velikanska, ponekod veliko večja od proračuna celotne slovenske agencije za raziskovanje.

Katera so ključna raziskovalna središča? Slovenci smo močni; kateri narodi še slovijo kot najuspešnejši na področju baterijskih sistemov?

Zagotovo je treba tukaj omeniti Francoze. Ti so tradicionalno navzoči pri razvoju baterijskega področja. Francoski raziskovalec Gaston Plante je na primer razvil svinčev akumulator. Sem lahko štejemo tudi Italijane, le da pri njih to področje ni tako dobro financirano. Nemci so v zadnjem času vložili v ta razvoj zelo veliko denarja. Če gledamo zgodovinsko, so za večino pomembnih odkritij na področju baterij zaslužni evropski raziskovalci, ki delajo doma ali v tujini. Potem pa te dosežke izkoristijo Združene države Amerike in jih nadgradijo v tehnologije, ki jih komercializirajo na Daljnem vzhodu. Moram pa omeniti, da tudi razvoj na Kitajskem ni več samo posnemanje – tudi tam so odlični raziskovalci, ki so se izšolali v Evropi in vodijo velike raziskovalne skupine, veliko večje, kot je naša.

Kako je potekal razvoj teh baterijskih sistemov? Javnost je nanje postala pozorna šele z napredkom električnih vozil, ampak to se je najverjetneje že dolgo pripravljalo v raziskovalnih središčih.

Da, ozreti se moramo v 70-a leta 20-ega stoletja, ko so spoznali, da baterije, ki so na voljo, ne zadovoljujejo potreb, predvsem v vesoljski tehnologiji. Takrat se je začelo razmišljati o litijevih baterijah. Pri tem vemo, da je litij najbolj elektronegativni element, se pravi, da imamo lahko najvišjo napetost enega elektrokemijskega člena in s tem veliko več energije kot z navadnimi svinčevimi akumulatorji. Takrat so v zvezi s tem naleteli na velike težave, ki so jih reševali postopoma, leta 1991 pa se je začela komercializacija prvega litijskoionskega akumulatorja, na tržišče ga je dalo podjetje Sony. Takrat je bila energijska gostota približno 0,8 amperske ure – za primerjavo, danes imamo v enaki prostornini že skoraj 3,5 amperske ure. V teh 25-ih letih je šel razvoj naprej, izdelali smo nove materiale, odkrili nove zakonitosti delovanja akumulatorjev, ki jih uporabljamo pri komercialnih izdelkih. Hkrati pa smo dosegli mejnik, ki smo ga predvideli – namreč, da energijske gostote litijsko-ionskih akumulatorjev ne bomo več mogli povečevati. V elektrokemijski reakciji namreč potrebujemo elektrone – pri tem pa nismo vedeli, kako bi povečali gostoto elektronov na določeno maso. Z objavo v reviji Science nam je uspelo pokazati, da se ta gostota lahko poveča na račun kisika, ki je v bateriji shranjen v obliki oksidov, prehodnih kovin – z izkoriščanjem tega redoks člena lahko do 50 odstotkov povečamo energijsko gostoto.

Morda bi na tej točki pojasnili, katere vrste baterij poznamo?

Litijskoionski akumulator je najbolj razširjen. Litijsko-žveplovi počasi prodirajo na tržišče, končuje se obdobje razvoja, nekaj podjetij po svetu jih preizkuša za različne namene (vzdržljivost, starost, varnostni vidik). Poznamo še litijsko-zračne sisteme. Njihova energijska gostota bi omogočila upravljanje letal na daljših, nekaj 1000 kilometrov dolgih razdaljah s stotimi potniki na krovu, vendar je treba celoten sistem še dodelati, da bo lahko deloval zunaj laboratorijskega okolja. Potem imamo zelo pomembno skupino natrijevih akumulatorjev. Ti ponujajo veliko možnosti na področju shranjevanja električne energije iz obnovljivih virov, energijsko gledano, pa so to malce šibkejši akumulatorji, energijska gostota je manjša. Natrij je sicer zelo razširjen element, razmeroma ugoden, zato lahko z njim gradimo velike sisteme. Naslednja skupina so akumulatorji na podlagi magnezija, morda kalcija. Energijska gostota bi bila lahko pri teh večja kot v litijskoionskih akumulatorjih, a je njihov razvoj šele na začetku; je pa nujen zaradi ohranjanja dostopa do surovin. Magnezij je namreč pogost element na Zemlji, dostopen vsem državam, litij pa je precej bolj omejen in geopolitično manj neodvisen. To pa lahko pripelje do novih trenj.

Kaj pa vodik?

Gorivne celice pa so druga zgodba. Poznamo jih iz obdobja med Sonyjevo komercializacijo in razvojem litijsko-ionskih akumulatorjev. V tistem času se je govorilo: »To smo naredili, za avtomobile pa potrebujemo vodik.« Pa vendar se uporaba gorivnih celic še do danes ni razširila. Verjamem pa, da bosta akumulator in gorivna celica v prihodnje složno sodelovala v mobilnosti.

Kako dolge razdalje pa že lahko premagajo avtomobili, v katere so vgrajene take baterije?

To je odvisno od več dejavnikov. Koliko kilometrov lahko prevozite z enim bencinskim tankom? Odvisno od njegove velikosti. Enako je z baterijami. Trenutno lahko z njimi prevozimo več sto kilometrov. Če to preračunamo na energijo, shranjeno v akumulatorju, smo zelo blizu razdalji, ki jo lahko prevozimo s komercialnimi avtomobili.

Pa ste si pred desetimi leti predstavljali takšen napredek?

Ne le pred desetimi, pred 17-imi leti, ko sem se pridružil skupini, sem dobil zamisel, da ne bi delali akumulatorjev za mobitele, ampak za avtomobile. No, to zamisel sem zdaj malo spremenil – zdaj pridobivamo električno energijo kar za letala.

Kako so takrat gledali na vas? Ste veljali za futurista ali so bili vaši cilji realni?

Ne, to so bili čisto realni cilji. Tudi pokojni profesor Janko Jamnik je imel podobna prepričanja.

Kako pa je z letali? Bi torej taki baterijski sistemi res lahko poganjali tudi letala?

To pa ni le vprašanje baterije, ampak celotnega sistema. To je dolgoročen projekt in zato upam, da bom še dejaven, ko ga bodo uresničili.

Kaj bi na tem področju radi videli v prihodnjih 17-ih letih?

Predvsem si želim, da bi imelo delo, ki ga opravlja naša skupina, sadove v komercialnih izdelkih. Pokazal bi rad, da je lahko naše znanje tudi uporabno, ne le objavljeno. To je tudi motivacija, s katero prihajam vsak dan zjutraj v službo in zaradi katere temu posvečam velik del svojega delovnika in tudi življenja.

Kako širite to motivacijo med svojimi sodelavci? Kako si postavljate cilje?

S kolegi iz tujine ni težav, vsi smo kot majhni otroci – smo zelo radovedni, hkrati pa težimo k nečemu novemu in boljšemu. Med mlajšimi sodelavci pa poskušam poiskati tiste, ki vedo, zakaj so prišli sem. Da niso torej prišli k meni zato, da bi pisali članke, temveč da bi se učili in naredili nekaj novega.

Kako dobro pa je o tem poučena javnost?

Včasih se sprašujem, kako lahko Slovenija še obstaja, ko pa je znanje tu tako malo cenjeno. Imamo odlično osnovno šolo. To je tudi razlog, zakaj smo se odločili, da ostanemo v Sloveniji – pozneje pa se to nekako izgubi, pomembnost znanja zvodeni.

Toda ali je znanje o stvareh, s katerimi se ukvarjate, dovolj razširjeno?

Velikokrat srečam sogovornike, ob katerih rečem lahko samo: »Le čevlje sodi naj Kopitar.«

Zdaj pa se, dr. Dominko, vrniva k objavi vaše skupine in skupine iz Francije v reviji Science. Za kaj gre?

Malo sem nakazal že prej: premaknili smo paradigmo miselnosti, da je energijska gostota litijskoionskih akumulatorjev omejena le na elektrone, ki prehajajo iz prehodnih kovin. Pokazali smo, da lahko v posebni kombinaciji pridobimo elektrone tudi iz kisika, ki je vezan v strukturo. S tem smo za 50 odstotkov povečali energijsko gostoto akumulatorja.

Kako se vam je porodila zamisel o tem?

Zamisel je zrasla iz dela drugih raziskovalnih skupin, ki so naletele na težave, a jih niso znale dobro razložiti. V tem času sem vodil virtualno skupino za litijskoionske akumulatorje na evropski ravni, idejo pa sva zasnovala s kolegom iz Francije. Dobila sva sredstva iz virtualnega inštituta, postdoktorski raziskovalec, ki sva mu bila mentorja, pa je opravil večino eksperimentalnega dela.

Koliko časa je preteklo od zamisli do objave?

Po navadi traja leta. Najprej je tu zamisel, potem je treba pridobiti denar, da jo lahko izpelješ, šele nato sledi raziskovanje. Pri nas je vse skupaj trajalo štiri leta. Nekateri drugi projekti zahtevajo še več časa.

Kaj pa to odkritje pomeni za industrijo, za napredek na področju litijskoionskih akumulatorjev?

Industrija to seveda podpira, saj to nakazuje možnosti, kako povečati zmožnosti električnih avtomobilov, avtonomičnost delovanja mobitelov in tako naprej … Predvsem pa s to tehnologijo ne bo treba spreminjati podporne elektronike, ki je v ozadju baterij in ki omogoča njihovo normalno delovanje brez varnostnih tveganj za široko uporabo.

Kako realna je vizija brezogljične družbe?

Zame popolnoma realna, a bo treba spremeniti našo miselnost.

Recimo v letih, desetletjih …?

Tu bi začel z drugega zornega kota … Zagotovo v nekaj desetletjih. Tehnologija bo zanesljivo napredovala, poleg tega pa prihajajo mlajše generacije, ki imajo čisto drugačno miselnost. Gospodje v drugi polovici življenja še moramo čutiti krmilo, pospeške in hrumenje motorja. Mlajšim generacijam pa ni bistvo avtomobil, zanje je bistven prevoz. Zanje ni tako pomembno, ali jih bo s točke A na točko B pripeljalo električno vozilo ali vozilo na gorivne celice ali katero drugo. Nove dimenzije prinašajo Googlovi, Applovi in brezpilotni avtomobili … To bo idealna priložnost za razvoj elektromobilnosti. Moramo pa se zavedati tudi tega, da se naša mesta utapljajo v smogu, dušikovih oksidih, ogljikovem dioksidu … To bo prisililo zakonodajalce, da bodo iz mest izkoreninili star način prevoza, in tedaj se bo promet dokončno elektrificiral.

Kako je s polnilnicami? Tudi to je eden od izzivov – kako omogočiti dovolj ustreznih polnilnic?

To je predvsem vprašanje, ki ga je treba nasloviti na vlado, mestna okrožja. Vedno govorimo, kaj bo prej – ali bo prej več električnih avtomobilov ali električnih polnilnic. Trenutno imamo veliko več polnilnic. A če se bo sprožil zagon elektromobilnosti, bo treba to nadgraditi.

V pogovoru malo prej, preden sem vključila mikrofon, ste mi omenili zanimivo misel s sestanka z zaposlenimi v Airbusu.

Da, na delavnici, ki jo je organiziral Airbus in na kateri sem sodeloval kot strokovnjak za baterije, smo v razpravi, zakaj raje električna letala z baterijami in ne z gorivnimi celicami, ugotovili, da je povečevanje energijske gostote baterij pričakovano. Eden od udeležencev, predstavil se je kot raketni znanstvenik, je ob tem slikovito dejal: »Poglejte, fantje. Pred desetimi leti ste govorili, da energijske gostote ne bomo mogli več povečati, da smo že dosegli maksimum, in zdaj imate z enako maso enkrat več energije na prostorninsko enoto. Se pravi – ne govorite mi, da čez 10 ali 20 let tega ne boste mogli podvojiti ali potrojiti.« Ali celo početveriti, kot zahtevajo.

Čeprav se vam danes najverjetneje še niti ne sanja, kako boste to dosegli?

Nekakšne obrise zamisli imam v glavi, a celotne tehnološke rešitve in vse elektrokemijske reakcije nam še niso znane.

Kakšno vlogo ima pri takih raziskavah industrija? Čutite njen pritisk? Kako sodelujeta raziskovalni sektor in industrija?

Sam se lahko pohvalim s sodelovanjem z industrijo na svetovni ravni. Pri evropskih projektih v zvezi z litijsko-žveplovimi akumulatorji je naš glavni motivator največji evropski proizvajalec baterij Saft. Želijo si to tehnologijo, vedo, da je to prihodnost, ob tem pa nam omogočajo, da vse dosežke iz laboratorijev pripeljemo na njihovo pilotno linijo in preizkusimo, kako delujejo v resnični baterijski celici. Sami s tem pridobivajo znanje, mi pa potrditev, da smo na pravi strani, in tudi informacije o tem, kakšni koraki so potrebni za komercializacijo. Na svetovni ravni pa naj omenim sodelovanje s podjetjem Honda in japonskimi raziskovalci preko nemške izpostave v Offenbachu. Pri tem gre za osnovno raziskovanje področja magnezijevih akumulatorjev. Z njimi si delimo rezultate, pa tudi delovno opremo. S tem jim pomagamo pri razvoju. Zagotovo je vizija večine, da bo prihodnost maloogljična, če ne že čisto brezogljična, zato pa je treba zavihati rokave in narediti nekaj novega.

Avtomobili in akumulatorji so po večini teme v pretežno moški domeni. Je v vaši skupini 14-ih raziskovalcev tudi kaj žensk? Se na tem področju srečujete tudi z ženskami ali je še vedno rezervirano predvsem za moške?

Res je, da je to področje bolj moško, ampak naj omenim, da je moja mlada raziskovalka pred kratkim povila zdravo hčerko. Imam še dve doktorandki, pred kratkim je ena končala doktorsko delo in je še zdaj zaposlena pri nas. Tako da nismo izključno moška skupina.

Akumulatorji zanimajo tudi ženske?

Seveda. Meje med tem, kar zanima ženske in moške, so čedalje bolj zabrisane.

 


Frekvenca X

690 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Bo elektrika poganjala tudi potniška letala? Morda pa res

07.01.2016

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.

Raziskovalci Kemijskega inštituta so se podpisali pod prvo objavo v reviji Science

Številni se strinjajo, da bo med vsemi nujnimi pogoji za razvoj električnih vozil, ključno vlogo odigral predvsem napredek na področju baterijskih sistemov. Potem ko so zgodnji entuziasti še privolili v višje cene in krajšo obstojnost, bo vstop na širši trg zahteval več. Pa lahko to pričakujemo v kratkem?

“Smo sredi revolucije, zlasti na področju razvoja materialov za baterijske sisteme prihodnosti. Na to vplivajo tudi zelo veliki denarni vložki, ki jih temu področju namenjajo po vsem svetu. Obetamo si nove revolucionarne izboljšave, in to že v prihodnjih nekaj letih.”

To je Haresh Kamath z ameriškega neodvisnega in nevladnega  inštituta za raziskovanje električne energije, EPRI. Tudi Slovenci smo na področju razvoja akumulatorjev za električna vozila v svetovnem raziskovalnem vrhu.

Kot vemo, naša prihodnost s fosilnimi gorivi ni svetla. Človeštvo bo moralo najti nek nov način, kako ekonomično in učinkovito izrabljati energijo. Baterija je pač eden izmed tistih potencialov, ki je sposobna shranjevati vso energijo iz obnovljivih virov in zato se širom po svetu vlaga ogromno sredstev v ta področja, kar pomeni zelo veliko konkurenco in koncentracijo znanja.”

Pravi dr. Robert Dominko, ki se skupaj z ekipo svojih raziskovalcev in francoskimi sodelavci podpisuje pod objavo v prestižni reviji Science. Gre za prvo objavo kateregakoli raziskovalca s tega inštituta v tej reviji, poslušalci pa ste to ta teden nagradili tudi z izborom za Ime tedna.

Celotnemu pogovoru z dr. Dominkom lahko prisluhnete spodaj.

INTERVJU SI LAHKO PREBERETE TUDI SPODAJ:

Prof. Robert Dominko, nam lahko predstavite laboratorij, ki ga vodite?

Ko govorimo o sodobnih baterijskih sistemih, imamo v mislih nove sisteme z baterijami, ki imajo povečano energijsko gostoto. Preprosteje rečeno, to pomeni, da imamo v enaki prostornini in pri enaki masi shranjene veliko več energije. Delo v laboratoriju se deli na tri osnovna področja: eno je nadaljevanje dela z litijskoionskimi akumulatorji. Pri tem iščemo nove možnosti, kako povečati količino energije, shranjene v njih. Drugo težišče je delo z litijsko-žveplovimi akumulatorji v zvezi s širokimi evropskimi konzorciji v dveh evropskih projektih, ki jih koordiniramo mi. Pri litijsko-žveplovih akumulatorjih govorimo o veliko večji energijski gostoti za veliko nižjo ceno. Kot sem omenil, sodelujemo z velikim konzorcijem priznanih avtomobilskih proizvajalcev, kot so Renault, Volvo, Peugeot, in močnim evropskim proizvajalcem baterij Saft, francoskim podjetjem iz Bordeauxa. V projekt so vključeni še inštituti in univerze, od švedskih in finskih do izraelskih in španskih.

Je razvoj takih baterijskih sistemov eno od vodilnih področij kemijskega inštituta?

Lahko bi rekli, da je eno vodilnih. Kemijski inštitut je znan tudi po drugih področjih, predvsem na biopodročju imamo zelo uspešne znanstvenike, pa tudi na področju materialov, predvsem polimerov, se na evropski ravni uvrščamo precej visoko.

Kako vroča tema pa so trenutno baterijski sistemi v svetu? Kako raziskovalci tekmujejo med sabo, da bi se dokopali do čim zmogljivejših baterijskih sistemov?

Kot vemo, prihodnost fosilnih goriv ni svetla. Človeštvo bo moralo najti nov način, kako gospodarno in učinkovito porabljati energijo. Baterija je pač ena izmed možnosti, ki lahko shranjujejo vso energijo iz obnovljivih virov, zato se po svetu vlaga ogromno sredstev v ta področja. To pomeni zelo veliko konkurenco, koncentracijo znanja, hkrati pa to omogoča tudi nadaljnji razvoj. Pri tem je treba napredek in delo raziskovalnih skupin po svetu zelo budno spremljati ter njihova odkritja s pridom uporabljati, tako da – po domače povedano – ne zaostajaš za njimi. Sredstva, ki jih v posameznih državah namenjajo za to, so velikanska, ponekod veliko večja od proračuna celotne slovenske agencije za raziskovanje.

Katera so ključna raziskovalna središča? Slovenci smo močni; kateri narodi še slovijo kot najuspešnejši na področju baterijskih sistemov?

Zagotovo je treba tukaj omeniti Francoze. Ti so tradicionalno navzoči pri razvoju baterijskega področja. Francoski raziskovalec Gaston Plante je na primer razvil svinčev akumulator. Sem lahko štejemo tudi Italijane, le da pri njih to področje ni tako dobro financirano. Nemci so v zadnjem času vložili v ta razvoj zelo veliko denarja. Če gledamo zgodovinsko, so za večino pomembnih odkritij na področju baterij zaslužni evropski raziskovalci, ki delajo doma ali v tujini. Potem pa te dosežke izkoristijo Združene države Amerike in jih nadgradijo v tehnologije, ki jih komercializirajo na Daljnem vzhodu. Moram pa omeniti, da tudi razvoj na Kitajskem ni več samo posnemanje – tudi tam so odlični raziskovalci, ki so se izšolali v Evropi in vodijo velike raziskovalne skupine, veliko večje, kot je naša.

Kako je potekal razvoj teh baterijskih sistemov? Javnost je nanje postala pozorna šele z napredkom električnih vozil, ampak to se je najverjetneje že dolgo pripravljalo v raziskovalnih središčih.

Da, ozreti se moramo v 70-a leta 20-ega stoletja, ko so spoznali, da baterije, ki so na voljo, ne zadovoljujejo potreb, predvsem v vesoljski tehnologiji. Takrat se je začelo razmišljati o litijevih baterijah. Pri tem vemo, da je litij najbolj elektronegativni element, se pravi, da imamo lahko najvišjo napetost enega elektrokemijskega člena in s tem veliko več energije kot z navadnimi svinčevimi akumulatorji. Takrat so v zvezi s tem naleteli na velike težave, ki so jih reševali postopoma, leta 1991 pa se je začela komercializacija prvega litijskoionskega akumulatorja, na tržišče ga je dalo podjetje Sony. Takrat je bila energijska gostota približno 0,8 amperske ure – za primerjavo, danes imamo v enaki prostornini že skoraj 3,5 amperske ure. V teh 25-ih letih je šel razvoj naprej, izdelali smo nove materiale, odkrili nove zakonitosti delovanja akumulatorjev, ki jih uporabljamo pri komercialnih izdelkih. Hkrati pa smo dosegli mejnik, ki smo ga predvideli – namreč, da energijske gostote litijsko-ionskih akumulatorjev ne bomo več mogli povečevati. V elektrokemijski reakciji namreč potrebujemo elektrone – pri tem pa nismo vedeli, kako bi povečali gostoto elektronov na določeno maso. Z objavo v reviji Science nam je uspelo pokazati, da se ta gostota lahko poveča na račun kisika, ki je v bateriji shranjen v obliki oksidov, prehodnih kovin – z izkoriščanjem tega redoks člena lahko do 50 odstotkov povečamo energijsko gostoto.

Morda bi na tej točki pojasnili, katere vrste baterij poznamo?

Litijskoionski akumulator je najbolj razširjen. Litijsko-žveplovi počasi prodirajo na tržišče, končuje se obdobje razvoja, nekaj podjetij po svetu jih preizkuša za različne namene (vzdržljivost, starost, varnostni vidik). Poznamo še litijsko-zračne sisteme. Njihova energijska gostota bi omogočila upravljanje letal na daljših, nekaj 1000 kilometrov dolgih razdaljah s stotimi potniki na krovu, vendar je treba celoten sistem še dodelati, da bo lahko deloval zunaj laboratorijskega okolja. Potem imamo zelo pomembno skupino natrijevih akumulatorjev. Ti ponujajo veliko možnosti na področju shranjevanja električne energije iz obnovljivih virov, energijsko gledano, pa so to malce šibkejši akumulatorji, energijska gostota je manjša. Natrij je sicer zelo razširjen element, razmeroma ugoden, zato lahko z njim gradimo velike sisteme. Naslednja skupina so akumulatorji na podlagi magnezija, morda kalcija. Energijska gostota bi bila lahko pri teh večja kot v litijskoionskih akumulatorjih, a je njihov razvoj šele na začetku; je pa nujen zaradi ohranjanja dostopa do surovin. Magnezij je namreč pogost element na Zemlji, dostopen vsem državam, litij pa je precej bolj omejen in geopolitično manj neodvisen. To pa lahko pripelje do novih trenj.

Kaj pa vodik?

Gorivne celice pa so druga zgodba. Poznamo jih iz obdobja med Sonyjevo komercializacijo in razvojem litijsko-ionskih akumulatorjev. V tistem času se je govorilo: »To smo naredili, za avtomobile pa potrebujemo vodik.« Pa vendar se uporaba gorivnih celic še do danes ni razširila. Verjamem pa, da bosta akumulator in gorivna celica v prihodnje složno sodelovala v mobilnosti.

Kako dolge razdalje pa že lahko premagajo avtomobili, v katere so vgrajene take baterije?

To je odvisno od več dejavnikov. Koliko kilometrov lahko prevozite z enim bencinskim tankom? Odvisno od njegove velikosti. Enako je z baterijami. Trenutno lahko z njimi prevozimo več sto kilometrov. Če to preračunamo na energijo, shranjeno v akumulatorju, smo zelo blizu razdalji, ki jo lahko prevozimo s komercialnimi avtomobili.

Pa ste si pred desetimi leti predstavljali takšen napredek?

Ne le pred desetimi, pred 17-imi leti, ko sem se pridružil skupini, sem dobil zamisel, da ne bi delali akumulatorjev za mobitele, ampak za avtomobile. No, to zamisel sem zdaj malo spremenil – zdaj pridobivamo električno energijo kar za letala.

Kako so takrat gledali na vas? Ste veljali za futurista ali so bili vaši cilji realni?

Ne, to so bili čisto realni cilji. Tudi pokojni profesor Janko Jamnik je imel podobna prepričanja.

Kako pa je z letali? Bi torej taki baterijski sistemi res lahko poganjali tudi letala?

To pa ni le vprašanje baterije, ampak celotnega sistema. To je dolgoročen projekt in zato upam, da bom še dejaven, ko ga bodo uresničili.

Kaj bi na tem področju radi videli v prihodnjih 17-ih letih?

Predvsem si želim, da bi imelo delo, ki ga opravlja naša skupina, sadove v komercialnih izdelkih. Pokazal bi rad, da je lahko naše znanje tudi uporabno, ne le objavljeno. To je tudi motivacija, s katero prihajam vsak dan zjutraj v službo in zaradi katere temu posvečam velik del svojega delovnika in tudi življenja.

Kako širite to motivacijo med svojimi sodelavci? Kako si postavljate cilje?

S kolegi iz tujine ni težav, vsi smo kot majhni otroci – smo zelo radovedni, hkrati pa težimo k nečemu novemu in boljšemu. Med mlajšimi sodelavci pa poskušam poiskati tiste, ki vedo, zakaj so prišli sem. Da niso torej prišli k meni zato, da bi pisali članke, temveč da bi se učili in naredili nekaj novega.

Kako dobro pa je o tem poučena javnost?

Včasih se sprašujem, kako lahko Slovenija še obstaja, ko pa je znanje tu tako malo cenjeno. Imamo odlično osnovno šolo. To je tudi razlog, zakaj smo se odločili, da ostanemo v Sloveniji – pozneje pa se to nekako izgubi, pomembnost znanja zvodeni.

Toda ali je znanje o stvareh, s katerimi se ukvarjate, dovolj razširjeno?

Velikokrat srečam sogovornike, ob katerih rečem lahko samo: »Le čevlje sodi naj Kopitar.«

Zdaj pa se, dr. Dominko, vrniva k objavi vaše skupine in skupine iz Francije v reviji Science. Za kaj gre?

Malo sem nakazal že prej: premaknili smo paradigmo miselnosti, da je energijska gostota litijskoionskih akumulatorjev omejena le na elektrone, ki prehajajo iz prehodnih kovin. Pokazali smo, da lahko v posebni kombinaciji pridobimo elektrone tudi iz kisika, ki je vezan v strukturo. S tem smo za 50 odstotkov povečali energijsko gostoto akumulatorja.

Kako se vam je porodila zamisel o tem?

Zamisel je zrasla iz dela drugih raziskovalnih skupin, ki so naletele na težave, a jih niso znale dobro razložiti. V tem času sem vodil virtualno skupino za litijskoionske akumulatorje na evropski ravni, idejo pa sva zasnovala s kolegom iz Francije. Dobila sva sredstva iz virtualnega inštituta, postdoktorski raziskovalec, ki sva mu bila mentorja, pa je opravil večino eksperimentalnega dela.

Koliko časa je preteklo od zamisli do objave?

Po navadi traja leta. Najprej je tu zamisel, potem je treba pridobiti denar, da jo lahko izpelješ, šele nato sledi raziskovanje. Pri nas je vse skupaj trajalo štiri leta. Nekateri drugi projekti zahtevajo še več časa.

Kaj pa to odkritje pomeni za industrijo, za napredek na področju litijskoionskih akumulatorjev?

Industrija to seveda podpira, saj to nakazuje možnosti, kako povečati zmožnosti električnih avtomobilov, avtonomičnost delovanja mobitelov in tako naprej … Predvsem pa s to tehnologijo ne bo treba spreminjati podporne elektronike, ki je v ozadju baterij in ki omogoča njihovo normalno delovanje brez varnostnih tveganj za široko uporabo.

Kako realna je vizija brezogljične družbe?

Zame popolnoma realna, a bo treba spremeniti našo miselnost.

Recimo v letih, desetletjih …?

Tu bi začel z drugega zornega kota … Zagotovo v nekaj desetletjih. Tehnologija bo zanesljivo napredovala, poleg tega pa prihajajo mlajše generacije, ki imajo čisto drugačno miselnost. Gospodje v drugi polovici življenja še moramo čutiti krmilo, pospeške in hrumenje motorja. Mlajšim generacijam pa ni bistvo avtomobil, zanje je bistven prevoz. Zanje ni tako pomembno, ali jih bo s točke A na točko B pripeljalo električno vozilo ali vozilo na gorivne celice ali katero drugo. Nove dimenzije prinašajo Googlovi, Applovi in brezpilotni avtomobili … To bo idealna priložnost za razvoj elektromobilnosti. Moramo pa se zavedati tudi tega, da se naša mesta utapljajo v smogu, dušikovih oksidih, ogljikovem dioksidu … To bo prisililo zakonodajalce, da bodo iz mest izkoreninili star način prevoza, in tedaj se bo promet dokončno elektrificiral.

Kako je s polnilnicami? Tudi to je eden od izzivov – kako omogočiti dovolj ustreznih polnilnic?

To je predvsem vprašanje, ki ga je treba nasloviti na vlado, mestna okrožja. Vedno govorimo, kaj bo prej – ali bo prej več električnih avtomobilov ali električnih polnilnic. Trenutno imamo veliko več polnilnic. A če se bo sprožil zagon elektromobilnosti, bo treba to nadgraditi.

V pogovoru malo prej, preden sem vključila mikrofon, ste mi omenili zanimivo misel s sestanka z zaposlenimi v Airbusu.

Da, na delavnici, ki jo je organiziral Airbus in na kateri sem sodeloval kot strokovnjak za baterije, smo v razpravi, zakaj raje električna letala z baterijami in ne z gorivnimi celicami, ugotovili, da je povečevanje energijske gostote baterij pričakovano. Eden od udeležencev, predstavil se je kot raketni znanstvenik, je ob tem slikovito dejal: »Poglejte, fantje. Pred desetimi leti ste govorili, da energijske gostote ne bomo mogli več povečati, da smo že dosegli maksimum, in zdaj imate z enako maso enkrat več energije na prostorninsko enoto. Se pravi – ne govorite mi, da čez 10 ali 20 let tega ne boste mogli podvojiti ali potrojiti.« Ali celo početveriti, kot zahtevajo.

Čeprav se vam danes najverjetneje še niti ne sanja, kako boste to dosegli?

Nekakšne obrise zamisli imam v glavi, a celotne tehnološke rešitve in vse elektrokemijske reakcije nam še niso znane.

Kakšno vlogo ima pri takih raziskavah industrija? Čutite njen pritisk? Kako sodelujeta raziskovalni sektor in industrija?

Sam se lahko pohvalim s sodelovanjem z industrijo na svetovni ravni. Pri evropskih projektih v zvezi z litijsko-žveplovimi akumulatorji je naš glavni motivator največji evropski proizvajalec baterij Saft. Želijo si to tehnologijo, vedo, da je to prihodnost, ob tem pa nam omogočajo, da vse dosežke iz laboratorijev pripeljemo na njihovo pilotno linijo in preizkusimo, kako delujejo v resnični baterijski celici. Sami s tem pridobivajo znanje, mi pa potrditev, da smo na pravi strani, in tudi informacije o tem, kakšni koraki so potrebni za komercializacijo. Na svetovni ravni pa naj omenim sodelovanje s podjetjem Honda in japonskimi raziskovalci preko nemške izpostave v Offenbachu. Pri tem gre za osnovno raziskovanje področja magnezijevih akumulatorjev. Z njimi si delimo rezultate, pa tudi delovno opremo. S tem jim pomagamo pri razvoju. Zagotovo je vizija večine, da bo prihodnost maloogljična, če ne že čisto brezogljična, zato pa je treba zavihati rokave in narediti nekaj novega.

Avtomobili in akumulatorji so po večini teme v pretežno moški domeni. Je v vaši skupini 14-ih raziskovalcev tudi kaj žensk? Se na tem področju srečujete tudi z ženskami ali je še vedno rezervirano predvsem za moške?

Res je, da je to področje bolj moško, ampak naj omenim, da je moja mlada raziskovalka pred kratkim povila zdravo hčerko. Imam še dve doktorandki, pred kratkim je ena končala doktorsko delo in je še zdaj zaposlena pri nas. Tako da nismo izključno moška skupina.

Akumulatorji zanimajo tudi ženske?

Seveda. Meje med tem, kar zanima ženske in moške, so čedalje bolj zabrisane.

 


23.04.2015

Sverre Aarseth, mojster vesoljskega plesa

Dr. Sverre Aarseth je legendarni astrofizik z Inštituta za astronomijo Univerze v Cambridgeu in skoraj vsakemu astrofiziku na svetu vzbudi hvaležnost, saj je razvil in z drugimi delil zelo učinkovite računalniške programe za preračunavanje interakcije med veliko telesi v vesolju. Lahko bi mu rekli kar mojster vesoljskega plesa.


16.04.2015

Neil de Grass Tyson

Tokratna Frekvenca X je nastala v sodelovanju s podcastom Številke na našem Multimedijskem portalu. Skupaj z avtorjem podcasta Slavkom Jeričem smo gostili priznanega komunikatorja znanosti Neila deGrassa Tysona.


09.04.2015

Komuniciranje znanosti

Minuli konec tedna so v Cernu po dveh letih znova zagnali Veliki hadronski trkalnik. Vrača se prenovljen in izpopolnjen, tako da se lahko nadejamo novih odkritij, ki bodo premikala meje sodobne fizike. A v tokratni Frekvenci X nas ne bo zanimala izjemno kompleksna »cernovska« fizika, temveč kako je znanstvenikom uspelo, da so iz nje v zgolj nekaj letih naredili medijsko vročo temo. Je za to res kriv Dan Brown z Angeli in demoni, prodorna uporaba Twitterja ali iznajdljivo trkanje na radovednost ljudi, bomo izvedeli v pogovoru z vodjo pisarne za komuniciranje z javnostjo v CERN-u. To je dr. James Gilles.


02.04.2015

Laniakea, naš širši galaktični dom

S Frekvenco X smo se podali v največja nadstropja narave, v neizmerno vesolje, kjer se plin združuje v zvezde, skupine zvezd pa v galaksije. Naša gostja bo profesorica Hélene Courtois ( Elen Kurtva) z Univerze v Lyonu, ki je lani s havajskimi kolegi odkrila, da je naša Rimska cesta del jate galaksij, ki so jo poimenovali Laniakea. V havajščini Laniakea pomeni neizmerljivo vesolje, ki pa ga je Hélene Courtois in njenim kolegom vseeno uspelo izmeriti.


26.03.2015

3 D tisk v medicini

Predstavljajte si, da ste v dolgi vrsti za transplantacijo organa. In zdaj pomislite, da bi nove sklepe, ledvica ali celo srce dobili kar s pomočjo 3D tiska? Prvi poskusi biotiska s pomočjo pravih celic segajo tik pred leto 2000, ko so prvič uporabili metodo biotiskanja, 3D-tiskanja z živimi celicami, za ustvarjanje umetnega mehurja. V nekaj letih je vse več raziskovalnih skupin iz različnih laboratorijih začelo razvijati ali spreminjati tiskalnike za tiskanje celic v treh dimenzijah.


19.03.2015

Fizika smučarskih skokov

Skupaj z očetom velikanke Janezom Goriškom smo obujali spomine na nastajanje letalnice velikanke in nekdanje rekorde v Planici ter preizkusili najnovejši simulator smučarskih skokov v Planici.


12.03.2015

Možgani zmagovalcev

Znanstvene raziskave so dokazale, da pride po zmagi pri zmagovalcu do dviga ravni testosterona in posledično tudi do večje agresivnosti pri naslednjem spopadu. Pojav ni značilen le za živali, ampak ga lahko opazimo tudi pri ljudeh, še posebej v športu. Gosta oddaje sta ugledni irski nevroznanstvenik prof. Ian Robertson in slovenski športni psiholog Aleš Vičič.


05.03.2015

Davno srečanje temne zvezde in sonca

V znanosti so odkritja le redko plod naključja, na drugi strani pa nikoli ni mogoče vedeti vnaprej, kaj boste odkrili. Tako je lani dr. Ralf Scholz iz Potsdama odkril zelo temno zvezdo v bližini našega Sonca, ki so jo kmalu poimenovali Scholzeva zvezda. Profesor Eric Mamajek (izg.:Memedžek), ki je eden največjih strokovnjakov za preučevanje okolice našega Sonca, pa je odkril, da je ta zvezda pred 70 tisoč leti potovala relativno blizu Sonca in je v tem pogledu naša doslej najbližja poznana obiskovalka. S profesorjem Mamajekom se bomo pogovarjali o njegovem odkritju in o vplivu takih mimoletov na komete v našem Osončju, pa seveda, kdaj si lahko obetamo, da bomo morebitne bodoče zvezdne obiskovalce poznali vnaprej.


19.02.2015

Psihologija strahu

Strah je osnovno čustvo in pri večini vzbuja neprijetne občutke. Pomislili bi celo, da je neustrašnost blagoslov. A to ni res. Strah je osnovni mehanizem, ki vklaplja preživetveni nagon, saj nas v nevarnosti pripravi na boj ali beg. Medicina pozna primere, ko ljudje ne čutijo strahu, zato pa so v nenehni nevarnosti. Gosta sta profesor dr. Grega Repovš in Stane Kranjc.


12.02.2015

Modrost psihopatov

Kaj se lahko naučimo od psihopatov? Tudi to, da če nas čaka neprijetno opravilo se ga je najbolje lotiti takoj, brez odlašanja. Psihopati sicer znajo biti izjemno šarmantni in karizmatični, če jim to pomaga pri doseganju zastavljenega cilja, a šarmantnost se lahko hitro spremeni v grobo brezobzirnost, ko presodijo, da ima takšna taktika večje možnosti za uspeh. Kako prepoznati psihopate, kako se z njimi soočiti in kaj se lahko od njih naučimo? Gosta: Dr. Kevin Dutton, profesor na Univerzi Oxford in Doc. dr. Maja Rus Makovec, psihiatrinja.


05.02.2015

FX fuzija

Poraba energije se v svetu izjemno povečuje, fosilna goriva so omejena, najti je treba bogat in čist vir energije. Kot ena izmed možnosti se kaže fuzijska energija, proizvod jedrske fuzije, procesa zlivanja vodikovih atomskih jeder, ki z energijo oskrbuje tudi naše sonce. To je proces, ki je nasproten jedrski fiziji oziroma cepitvi atomskih jeder, ki se uporablja v sodobnih jedrskih reaktorjih. O tem, kako ustvariti majhno sonce na Zemlji, kot svojim prizadevanjem ljubkovalno pravijo znanstveniki na področju fuzije, se bomo v Frekvenci X pogovarjali z vodjo evropskega programa EUROfusion Tonyjem Donnejem, obiskali pa bomo tudi pospeševalnik v Reaktorskem centru Inštituta Jožef Štefan.


29.01.2015

Izginjajoči kromosom Y

Osnovna biološka razlika med moškim in žensko je ta, da ima ženska ima v svojih celicah dve kopiji spolnega kromosoma X, moški pa X in Y. Kromosom Y moškega naredi moškega. X in Y sta bila nekoč enako velika, nato pa se je začel kromosom Y krčiti in izgubljati gene. Po prepričanju nekaterih genetikov se ta proces degeneracije nadaljuje. A moški še ne bodo izumrli, pomirja profesor Darren Griffin z Univerze Kent v Veliki Britaniji.


22.01.2015

Druga doba strojev

“Srečni posamezniki, ki bodo vseeno lahko udeleženi pri kakem kreativnem opravilu, bodo predstavljali resnično elito človeštva … V družbi prisilnega brezdelja bo postala najbolj cenjena beseda – delo!” Tako je pred 50 leti zapisal Isaac Asimov, avtor znanstvene-fantastike. Morda se je vseeno malo zmotil, a pravilno je napovedal, da bomo leta 2015 uporabljali Skype, si kuhali kavo s pritiskom na gumb in da bodo vedno več del prevzemali roboti … Računalniki podvojijo svoje procesorske zmožnosti približno vsako leto in pol. Sedaj imamo v svojih žepih pametne telefone, v katere so vgrajeni procesorji, ki so tako hitri, kot so bili pred nekaj desetletji le zelo dragi superračunalniki.


15.01.2015

Največje oko zazrto v nebo

O vesolju še zdaleč ne vemo vsega, poznamo le 4 odstotke. Preostanek je temna snov in temna energija, kar smo spoznali tudi po zaslugi teleskopov, ki so pripomogli k številnim odkritjem, na katera še pred petnajstimi leti nismo niti pomislili. Prejšnji mesec pa je dobil dokončno zeleno luč za konstrukcijo Evropski ekstremno veliki teleskop (E-ELT). Gre za daleč najzmogljivejši astronomski teleskop na Zemlji, ki bo opazoval vesolje v vidni in infrardeči svetlobi.


08.01.2015

Čar zemljinih polov

Severni in južni pol Zemlje sta v zgodovini vedno burila domišljijo, v ta večni led in sneg so se podajali številni pogumni osvajalci, danes pa so brezmejna bela prostranstva predvsem začasni dom številnih raziskovalnih ekip. Na Antarktiko smo poklicali mlado meteorologinjo Mairi Simms, z britanskim znanstvenikom Jonom Shanklinom se bomo spomnili odkritja velikanske ozonske luknje pred natanko 30-imi leti, z dansko znanstvenico Dorthe Dahl-Jensen pa pogledali globoko v zgodovino ledenih poledenitev. Svet tam daleč ni le hladen in zato romantično lep, je tudi trpko opozorilo, kako krhko je zemeljsko podnebno ravnovesje.


01.01.2015

Znanstveni presežki 2014

Pristanek sonde Rosetta na kometu, odkritje najstarejše zvezde na svetu, izum modrih LED diod, najdba okostja največjega dinozavra, rekordno globalno segrevanje ... To je le nekaj dosežkov, ki smo jih osvetlili v pregledni oddaji Frekvenca X.


25.12.2014

Z znanostjo naprej!

Kaj je zaznamovalo znanstveno leto 2014? Za profesorja doktorja Petra Križana je bilo zagotovo v ospredju delo v najbolj zmogljivem pospeševalniku delcev na Japonskem. Prof. Križan je v Tsukubi, v bližini Tokia, preživel dva meseca, saj tam vodi veliko mednarodno skupino znanstvenikov, pri eksperimentu Belle 2 pa sodelujejo še nekateri naši strokovnjaki. Maja Ratej in Luka Hvalc sta se prof. Križanom srečala na Inštitutu Jožefa Stefana, poleg Fakultete za matematiko in fiziko njegovo matično institucijo v Sloveniji.


11.12.2014

Oglas na glas za dober glas

Kaj je tisto v človeškem glasu, kar ga naredi tako privlačnega, prepričljivega ali pa odbijajočega? Kako je mogoče, da lahko vso človekovo osebnost razodeva le kombinacija zvočnih valov? Naši sogovorniki v tokratni Frekvenci X bodo foniatrinja, glasovni forenzik, antropolog, dramska profesorica za področje govora, pevec, ki se ukvarja z grlenim petjem in mojster beatbox tehnike. Koktajl človeških glasov, v katerega so svoj delež prispevali tudi naši poslušalci, vam postrežemo v tokratni Frekvenci X.


04.12.2014

Iz take smo snovi kot zvezde

Profesor Martin Asplund je vodilni svetovni strokovnjak za preučevanje kemične sestave vesolja, kot ga vidimo v zvezdah naše Galaksije. Je prvi, ki je natančno določil kemično sestavo Sonca – naše domače zvezde, ki jo najbolje poznamo -, vendar se je v zadnjem desetletju pokazalo, da je njegova kemična sestava drugačna, kot smo mislili dotlej. Kako velike so te razlike in zakaj je do njih prišlo? Iz česa so zvezde, kako natančno je znanje o tem in zakaj nas to zanima? Odgovore boste zvedeli v tokratni astronomski Frekvenci X. Oddajo pripravljamo v sodelovanju s prof.dr. Tomažem Zwittrom.


19.11.2014

Kako se ljudje razlikujemo od živali

Ljudje smo seveda kompleksna živa bitja z zelo jasno izdelanimi preživetvenimi modeli. V nekaj tisočletjih hitrega razvoja smo ustvarili kompleksno civilizacijo, ki omogoča učinkovito globalno sodelovanje in hitro izmenjavo idej. A kaj konkretno je tista bistvena lastnost, ki nam je omogočila, da smo postali uspešnejši kot katera koli druga žival na planetu?


Stran 22 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov