Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Bo elektrika poganjala tudi potniška letala? Morda pa res

07.01.2016

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.

Raziskovalci Kemijskega inštituta so se podpisali pod prvo objavo v reviji Science

Številni se strinjajo, da bo med vsemi nujnimi pogoji za razvoj električnih vozil, ključno vlogo odigral predvsem napredek na področju baterijskih sistemov. Potem ko so zgodnji entuziasti še privolili v višje cene in krajšo obstojnost, bo vstop na širši trg zahteval več. Pa lahko to pričakujemo v kratkem?

“Smo sredi revolucije, zlasti na področju razvoja materialov za baterijske sisteme prihodnosti. Na to vplivajo tudi zelo veliki denarni vložki, ki jih temu področju namenjajo po vsem svetu. Obetamo si nove revolucionarne izboljšave, in to že v prihodnjih nekaj letih.”

To je Haresh Kamath z ameriškega neodvisnega in nevladnega  inštituta za raziskovanje električne energije, EPRI. Tudi Slovenci smo na področju razvoja akumulatorjev za električna vozila v svetovnem raziskovalnem vrhu.

Kot vemo, naša prihodnost s fosilnimi gorivi ni svetla. Človeštvo bo moralo najti nek nov način, kako ekonomično in učinkovito izrabljati energijo. Baterija je pač eden izmed tistih potencialov, ki je sposobna shranjevati vso energijo iz obnovljivih virov in zato se širom po svetu vlaga ogromno sredstev v ta področja, kar pomeni zelo veliko konkurenco in koncentracijo znanja.”

Pravi dr. Robert Dominko, ki se skupaj z ekipo svojih raziskovalcev in francoskimi sodelavci podpisuje pod objavo v prestižni reviji Science. Gre za prvo objavo kateregakoli raziskovalca s tega inštituta v tej reviji, poslušalci pa ste to ta teden nagradili tudi z izborom za Ime tedna.

Celotnemu pogovoru z dr. Dominkom lahko prisluhnete spodaj.

INTERVJU SI LAHKO PREBERETE TUDI SPODAJ:

Prof. Robert Dominko, nam lahko predstavite laboratorij, ki ga vodite?

Ko govorimo o sodobnih baterijskih sistemih, imamo v mislih nove sisteme z baterijami, ki imajo povečano energijsko gostoto. Preprosteje rečeno, to pomeni, da imamo v enaki prostornini in pri enaki masi shranjene veliko več energije. Delo v laboratoriju se deli na tri osnovna področja: eno je nadaljevanje dela z litijskoionskimi akumulatorji. Pri tem iščemo nove možnosti, kako povečati količino energije, shranjene v njih. Drugo težišče je delo z litijsko-žveplovimi akumulatorji v zvezi s širokimi evropskimi konzorciji v dveh evropskih projektih, ki jih koordiniramo mi. Pri litijsko-žveplovih akumulatorjih govorimo o veliko večji energijski gostoti za veliko nižjo ceno. Kot sem omenil, sodelujemo z velikim konzorcijem priznanih avtomobilskih proizvajalcev, kot so Renault, Volvo, Peugeot, in močnim evropskim proizvajalcem baterij Saft, francoskim podjetjem iz Bordeauxa. V projekt so vključeni še inštituti in univerze, od švedskih in finskih do izraelskih in španskih.

Je razvoj takih baterijskih sistemov eno od vodilnih področij kemijskega inštituta?

Lahko bi rekli, da je eno vodilnih. Kemijski inštitut je znan tudi po drugih področjih, predvsem na biopodročju imamo zelo uspešne znanstvenike, pa tudi na področju materialov, predvsem polimerov, se na evropski ravni uvrščamo precej visoko.

Kako vroča tema pa so trenutno baterijski sistemi v svetu? Kako raziskovalci tekmujejo med sabo, da bi se dokopali do čim zmogljivejših baterijskih sistemov?

Kot vemo, prihodnost fosilnih goriv ni svetla. Človeštvo bo moralo najti nov način, kako gospodarno in učinkovito porabljati energijo. Baterija je pač ena izmed možnosti, ki lahko shranjujejo vso energijo iz obnovljivih virov, zato se po svetu vlaga ogromno sredstev v ta področja. To pomeni zelo veliko konkurenco, koncentracijo znanja, hkrati pa to omogoča tudi nadaljnji razvoj. Pri tem je treba napredek in delo raziskovalnih skupin po svetu zelo budno spremljati ter njihova odkritja s pridom uporabljati, tako da – po domače povedano – ne zaostajaš za njimi. Sredstva, ki jih v posameznih državah namenjajo za to, so velikanska, ponekod veliko večja od proračuna celotne slovenske agencije za raziskovanje.

Katera so ključna raziskovalna središča? Slovenci smo močni; kateri narodi še slovijo kot najuspešnejši na področju baterijskih sistemov?

Zagotovo je treba tukaj omeniti Francoze. Ti so tradicionalno navzoči pri razvoju baterijskega področja. Francoski raziskovalec Gaston Plante je na primer razvil svinčev akumulator. Sem lahko štejemo tudi Italijane, le da pri njih to področje ni tako dobro financirano. Nemci so v zadnjem času vložili v ta razvoj zelo veliko denarja. Če gledamo zgodovinsko, so za večino pomembnih odkritij na področju baterij zaslužni evropski raziskovalci, ki delajo doma ali v tujini. Potem pa te dosežke izkoristijo Združene države Amerike in jih nadgradijo v tehnologije, ki jih komercializirajo na Daljnem vzhodu. Moram pa omeniti, da tudi razvoj na Kitajskem ni več samo posnemanje – tudi tam so odlični raziskovalci, ki so se izšolali v Evropi in vodijo velike raziskovalne skupine, veliko večje, kot je naša.

Kako je potekal razvoj teh baterijskih sistemov? Javnost je nanje postala pozorna šele z napredkom električnih vozil, ampak to se je najverjetneje že dolgo pripravljalo v raziskovalnih središčih.

Da, ozreti se moramo v 70-a leta 20-ega stoletja, ko so spoznali, da baterije, ki so na voljo, ne zadovoljujejo potreb, predvsem v vesoljski tehnologiji. Takrat se je začelo razmišljati o litijevih baterijah. Pri tem vemo, da je litij najbolj elektronegativni element, se pravi, da imamo lahko najvišjo napetost enega elektrokemijskega člena in s tem veliko več energije kot z navadnimi svinčevimi akumulatorji. Takrat so v zvezi s tem naleteli na velike težave, ki so jih reševali postopoma, leta 1991 pa se je začela komercializacija prvega litijskoionskega akumulatorja, na tržišče ga je dalo podjetje Sony. Takrat je bila energijska gostota približno 0,8 amperske ure – za primerjavo, danes imamo v enaki prostornini že skoraj 3,5 amperske ure. V teh 25-ih letih je šel razvoj naprej, izdelali smo nove materiale, odkrili nove zakonitosti delovanja akumulatorjev, ki jih uporabljamo pri komercialnih izdelkih. Hkrati pa smo dosegli mejnik, ki smo ga predvideli – namreč, da energijske gostote litijsko-ionskih akumulatorjev ne bomo več mogli povečevati. V elektrokemijski reakciji namreč potrebujemo elektrone – pri tem pa nismo vedeli, kako bi povečali gostoto elektronov na določeno maso. Z objavo v reviji Science nam je uspelo pokazati, da se ta gostota lahko poveča na račun kisika, ki je v bateriji shranjen v obliki oksidov, prehodnih kovin – z izkoriščanjem tega redoks člena lahko do 50 odstotkov povečamo energijsko gostoto.

Morda bi na tej točki pojasnili, katere vrste baterij poznamo?

Litijskoionski akumulator je najbolj razširjen. Litijsko-žveplovi počasi prodirajo na tržišče, končuje se obdobje razvoja, nekaj podjetij po svetu jih preizkuša za različne namene (vzdržljivost, starost, varnostni vidik). Poznamo še litijsko-zračne sisteme. Njihova energijska gostota bi omogočila upravljanje letal na daljših, nekaj 1000 kilometrov dolgih razdaljah s stotimi potniki na krovu, vendar je treba celoten sistem še dodelati, da bo lahko deloval zunaj laboratorijskega okolja. Potem imamo zelo pomembno skupino natrijevih akumulatorjev. Ti ponujajo veliko možnosti na področju shranjevanja električne energije iz obnovljivih virov, energijsko gledano, pa so to malce šibkejši akumulatorji, energijska gostota je manjša. Natrij je sicer zelo razširjen element, razmeroma ugoden, zato lahko z njim gradimo velike sisteme. Naslednja skupina so akumulatorji na podlagi magnezija, morda kalcija. Energijska gostota bi bila lahko pri teh večja kot v litijskoionskih akumulatorjih, a je njihov razvoj šele na začetku; je pa nujen zaradi ohranjanja dostopa do surovin. Magnezij je namreč pogost element na Zemlji, dostopen vsem državam, litij pa je precej bolj omejen in geopolitično manj neodvisen. To pa lahko pripelje do novih trenj.

Kaj pa vodik?

Gorivne celice pa so druga zgodba. Poznamo jih iz obdobja med Sonyjevo komercializacijo in razvojem litijsko-ionskih akumulatorjev. V tistem času se je govorilo: »To smo naredili, za avtomobile pa potrebujemo vodik.« Pa vendar se uporaba gorivnih celic še do danes ni razširila. Verjamem pa, da bosta akumulator in gorivna celica v prihodnje složno sodelovala v mobilnosti.

Kako dolge razdalje pa že lahko premagajo avtomobili, v katere so vgrajene take baterije?

To je odvisno od več dejavnikov. Koliko kilometrov lahko prevozite z enim bencinskim tankom? Odvisno od njegove velikosti. Enako je z baterijami. Trenutno lahko z njimi prevozimo več sto kilometrov. Če to preračunamo na energijo, shranjeno v akumulatorju, smo zelo blizu razdalji, ki jo lahko prevozimo s komercialnimi avtomobili.

Pa ste si pred desetimi leti predstavljali takšen napredek?

Ne le pred desetimi, pred 17-imi leti, ko sem se pridružil skupini, sem dobil zamisel, da ne bi delali akumulatorjev za mobitele, ampak za avtomobile. No, to zamisel sem zdaj malo spremenil – zdaj pridobivamo električno energijo kar za letala.

Kako so takrat gledali na vas? Ste veljali za futurista ali so bili vaši cilji realni?

Ne, to so bili čisto realni cilji. Tudi pokojni profesor Janko Jamnik je imel podobna prepričanja.

Kako pa je z letali? Bi torej taki baterijski sistemi res lahko poganjali tudi letala?

To pa ni le vprašanje baterije, ampak celotnega sistema. To je dolgoročen projekt in zato upam, da bom še dejaven, ko ga bodo uresničili.

Kaj bi na tem področju radi videli v prihodnjih 17-ih letih?

Predvsem si želim, da bi imelo delo, ki ga opravlja naša skupina, sadove v komercialnih izdelkih. Pokazal bi rad, da je lahko naše znanje tudi uporabno, ne le objavljeno. To je tudi motivacija, s katero prihajam vsak dan zjutraj v službo in zaradi katere temu posvečam velik del svojega delovnika in tudi življenja.

Kako širite to motivacijo med svojimi sodelavci? Kako si postavljate cilje?

S kolegi iz tujine ni težav, vsi smo kot majhni otroci – smo zelo radovedni, hkrati pa težimo k nečemu novemu in boljšemu. Med mlajšimi sodelavci pa poskušam poiskati tiste, ki vedo, zakaj so prišli sem. Da niso torej prišli k meni zato, da bi pisali članke, temveč da bi se učili in naredili nekaj novega.

Kako dobro pa je o tem poučena javnost?

Včasih se sprašujem, kako lahko Slovenija še obstaja, ko pa je znanje tu tako malo cenjeno. Imamo odlično osnovno šolo. To je tudi razlog, zakaj smo se odločili, da ostanemo v Sloveniji – pozneje pa se to nekako izgubi, pomembnost znanja zvodeni.

Toda ali je znanje o stvareh, s katerimi se ukvarjate, dovolj razširjeno?

Velikokrat srečam sogovornike, ob katerih rečem lahko samo: »Le čevlje sodi naj Kopitar.«

Zdaj pa se, dr. Dominko, vrniva k objavi vaše skupine in skupine iz Francije v reviji Science. Za kaj gre?

Malo sem nakazal že prej: premaknili smo paradigmo miselnosti, da je energijska gostota litijskoionskih akumulatorjev omejena le na elektrone, ki prehajajo iz prehodnih kovin. Pokazali smo, da lahko v posebni kombinaciji pridobimo elektrone tudi iz kisika, ki je vezan v strukturo. S tem smo za 50 odstotkov povečali energijsko gostoto akumulatorja.

Kako se vam je porodila zamisel o tem?

Zamisel je zrasla iz dela drugih raziskovalnih skupin, ki so naletele na težave, a jih niso znale dobro razložiti. V tem času sem vodil virtualno skupino za litijskoionske akumulatorje na evropski ravni, idejo pa sva zasnovala s kolegom iz Francije. Dobila sva sredstva iz virtualnega inštituta, postdoktorski raziskovalec, ki sva mu bila mentorja, pa je opravil večino eksperimentalnega dela.

Koliko časa je preteklo od zamisli do objave?

Po navadi traja leta. Najprej je tu zamisel, potem je treba pridobiti denar, da jo lahko izpelješ, šele nato sledi raziskovanje. Pri nas je vse skupaj trajalo štiri leta. Nekateri drugi projekti zahtevajo še več časa.

Kaj pa to odkritje pomeni za industrijo, za napredek na področju litijskoionskih akumulatorjev?

Industrija to seveda podpira, saj to nakazuje možnosti, kako povečati zmožnosti električnih avtomobilov, avtonomičnost delovanja mobitelov in tako naprej … Predvsem pa s to tehnologijo ne bo treba spreminjati podporne elektronike, ki je v ozadju baterij in ki omogoča njihovo normalno delovanje brez varnostnih tveganj za široko uporabo.

Kako realna je vizija brezogljične družbe?

Zame popolnoma realna, a bo treba spremeniti našo miselnost.

Recimo v letih, desetletjih …?

Tu bi začel z drugega zornega kota … Zagotovo v nekaj desetletjih. Tehnologija bo zanesljivo napredovala, poleg tega pa prihajajo mlajše generacije, ki imajo čisto drugačno miselnost. Gospodje v drugi polovici življenja še moramo čutiti krmilo, pospeške in hrumenje motorja. Mlajšim generacijam pa ni bistvo avtomobil, zanje je bistven prevoz. Zanje ni tako pomembno, ali jih bo s točke A na točko B pripeljalo električno vozilo ali vozilo na gorivne celice ali katero drugo. Nove dimenzije prinašajo Googlovi, Applovi in brezpilotni avtomobili … To bo idealna priložnost za razvoj elektromobilnosti. Moramo pa se zavedati tudi tega, da se naša mesta utapljajo v smogu, dušikovih oksidih, ogljikovem dioksidu … To bo prisililo zakonodajalce, da bodo iz mest izkoreninili star način prevoza, in tedaj se bo promet dokončno elektrificiral.

Kako je s polnilnicami? Tudi to je eden od izzivov – kako omogočiti dovolj ustreznih polnilnic?

To je predvsem vprašanje, ki ga je treba nasloviti na vlado, mestna okrožja. Vedno govorimo, kaj bo prej – ali bo prej več električnih avtomobilov ali električnih polnilnic. Trenutno imamo veliko več polnilnic. A če se bo sprožil zagon elektromobilnosti, bo treba to nadgraditi.

V pogovoru malo prej, preden sem vključila mikrofon, ste mi omenili zanimivo misel s sestanka z zaposlenimi v Airbusu.

Da, na delavnici, ki jo je organiziral Airbus in na kateri sem sodeloval kot strokovnjak za baterije, smo v razpravi, zakaj raje električna letala z baterijami in ne z gorivnimi celicami, ugotovili, da je povečevanje energijske gostote baterij pričakovano. Eden od udeležencev, predstavil se je kot raketni znanstvenik, je ob tem slikovito dejal: »Poglejte, fantje. Pred desetimi leti ste govorili, da energijske gostote ne bomo mogli več povečati, da smo že dosegli maksimum, in zdaj imate z enako maso enkrat več energije na prostorninsko enoto. Se pravi – ne govorite mi, da čez 10 ali 20 let tega ne boste mogli podvojiti ali potrojiti.« Ali celo početveriti, kot zahtevajo.

Čeprav se vam danes najverjetneje še niti ne sanja, kako boste to dosegli?

Nekakšne obrise zamisli imam v glavi, a celotne tehnološke rešitve in vse elektrokemijske reakcije nam še niso znane.

Kakšno vlogo ima pri takih raziskavah industrija? Čutite njen pritisk? Kako sodelujeta raziskovalni sektor in industrija?

Sam se lahko pohvalim s sodelovanjem z industrijo na svetovni ravni. Pri evropskih projektih v zvezi z litijsko-žveplovimi akumulatorji je naš glavni motivator največji evropski proizvajalec baterij Saft. Želijo si to tehnologijo, vedo, da je to prihodnost, ob tem pa nam omogočajo, da vse dosežke iz laboratorijev pripeljemo na njihovo pilotno linijo in preizkusimo, kako delujejo v resnični baterijski celici. Sami s tem pridobivajo znanje, mi pa potrditev, da smo na pravi strani, in tudi informacije o tem, kakšni koraki so potrebni za komercializacijo. Na svetovni ravni pa naj omenim sodelovanje s podjetjem Honda in japonskimi raziskovalci preko nemške izpostave v Offenbachu. Pri tem gre za osnovno raziskovanje področja magnezijevih akumulatorjev. Z njimi si delimo rezultate, pa tudi delovno opremo. S tem jim pomagamo pri razvoju. Zagotovo je vizija večine, da bo prihodnost maloogljična, če ne že čisto brezogljična, zato pa je treba zavihati rokave in narediti nekaj novega.

Avtomobili in akumulatorji so po večini teme v pretežno moški domeni. Je v vaši skupini 14-ih raziskovalcev tudi kaj žensk? Se na tem področju srečujete tudi z ženskami ali je še vedno rezervirano predvsem za moške?

Res je, da je to področje bolj moško, ampak naj omenim, da je moja mlada raziskovalka pred kratkim povila zdravo hčerko. Imam še dve doktorandki, pred kratkim je ena končala doktorsko delo in je še zdaj zaposlena pri nas. Tako da nismo izključno moška skupina.

Akumulatorji zanimajo tudi ženske?

Seveda. Meje med tem, kar zanima ženske in moške, so čedalje bolj zabrisane.

 


Frekvenca X

690 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Bo elektrika poganjala tudi potniška letala? Morda pa res

07.01.2016

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.

Raziskovalci Kemijskega inštituta so se podpisali pod prvo objavo v reviji Science

Številni se strinjajo, da bo med vsemi nujnimi pogoji za razvoj električnih vozil, ključno vlogo odigral predvsem napredek na področju baterijskih sistemov. Potem ko so zgodnji entuziasti še privolili v višje cene in krajšo obstojnost, bo vstop na širši trg zahteval več. Pa lahko to pričakujemo v kratkem?

“Smo sredi revolucije, zlasti na področju razvoja materialov za baterijske sisteme prihodnosti. Na to vplivajo tudi zelo veliki denarni vložki, ki jih temu področju namenjajo po vsem svetu. Obetamo si nove revolucionarne izboljšave, in to že v prihodnjih nekaj letih.”

To je Haresh Kamath z ameriškega neodvisnega in nevladnega  inštituta za raziskovanje električne energije, EPRI. Tudi Slovenci smo na področju razvoja akumulatorjev za električna vozila v svetovnem raziskovalnem vrhu.

Kot vemo, naša prihodnost s fosilnimi gorivi ni svetla. Človeštvo bo moralo najti nek nov način, kako ekonomično in učinkovito izrabljati energijo. Baterija je pač eden izmed tistih potencialov, ki je sposobna shranjevati vso energijo iz obnovljivih virov in zato se širom po svetu vlaga ogromno sredstev v ta področja, kar pomeni zelo veliko konkurenco in koncentracijo znanja.”

Pravi dr. Robert Dominko, ki se skupaj z ekipo svojih raziskovalcev in francoskimi sodelavci podpisuje pod objavo v prestižni reviji Science. Gre za prvo objavo kateregakoli raziskovalca s tega inštituta v tej reviji, poslušalci pa ste to ta teden nagradili tudi z izborom za Ime tedna.

Celotnemu pogovoru z dr. Dominkom lahko prisluhnete spodaj.

INTERVJU SI LAHKO PREBERETE TUDI SPODAJ:

Prof. Robert Dominko, nam lahko predstavite laboratorij, ki ga vodite?

Ko govorimo o sodobnih baterijskih sistemih, imamo v mislih nove sisteme z baterijami, ki imajo povečano energijsko gostoto. Preprosteje rečeno, to pomeni, da imamo v enaki prostornini in pri enaki masi shranjene veliko več energije. Delo v laboratoriju se deli na tri osnovna področja: eno je nadaljevanje dela z litijskoionskimi akumulatorji. Pri tem iščemo nove možnosti, kako povečati količino energije, shranjene v njih. Drugo težišče je delo z litijsko-žveplovimi akumulatorji v zvezi s širokimi evropskimi konzorciji v dveh evropskih projektih, ki jih koordiniramo mi. Pri litijsko-žveplovih akumulatorjih govorimo o veliko večji energijski gostoti za veliko nižjo ceno. Kot sem omenil, sodelujemo z velikim konzorcijem priznanih avtomobilskih proizvajalcev, kot so Renault, Volvo, Peugeot, in močnim evropskim proizvajalcem baterij Saft, francoskim podjetjem iz Bordeauxa. V projekt so vključeni še inštituti in univerze, od švedskih in finskih do izraelskih in španskih.

Je razvoj takih baterijskih sistemov eno od vodilnih področij kemijskega inštituta?

Lahko bi rekli, da je eno vodilnih. Kemijski inštitut je znan tudi po drugih področjih, predvsem na biopodročju imamo zelo uspešne znanstvenike, pa tudi na področju materialov, predvsem polimerov, se na evropski ravni uvrščamo precej visoko.

Kako vroča tema pa so trenutno baterijski sistemi v svetu? Kako raziskovalci tekmujejo med sabo, da bi se dokopali do čim zmogljivejših baterijskih sistemov?

Kot vemo, prihodnost fosilnih goriv ni svetla. Človeštvo bo moralo najti nov način, kako gospodarno in učinkovito porabljati energijo. Baterija je pač ena izmed možnosti, ki lahko shranjujejo vso energijo iz obnovljivih virov, zato se po svetu vlaga ogromno sredstev v ta področja. To pomeni zelo veliko konkurenco, koncentracijo znanja, hkrati pa to omogoča tudi nadaljnji razvoj. Pri tem je treba napredek in delo raziskovalnih skupin po svetu zelo budno spremljati ter njihova odkritja s pridom uporabljati, tako da – po domače povedano – ne zaostajaš za njimi. Sredstva, ki jih v posameznih državah namenjajo za to, so velikanska, ponekod veliko večja od proračuna celotne slovenske agencije za raziskovanje.

Katera so ključna raziskovalna središča? Slovenci smo močni; kateri narodi še slovijo kot najuspešnejši na področju baterijskih sistemov?

Zagotovo je treba tukaj omeniti Francoze. Ti so tradicionalno navzoči pri razvoju baterijskega področja. Francoski raziskovalec Gaston Plante je na primer razvil svinčev akumulator. Sem lahko štejemo tudi Italijane, le da pri njih to področje ni tako dobro financirano. Nemci so v zadnjem času vložili v ta razvoj zelo veliko denarja. Če gledamo zgodovinsko, so za večino pomembnih odkritij na področju baterij zaslužni evropski raziskovalci, ki delajo doma ali v tujini. Potem pa te dosežke izkoristijo Združene države Amerike in jih nadgradijo v tehnologije, ki jih komercializirajo na Daljnem vzhodu. Moram pa omeniti, da tudi razvoj na Kitajskem ni več samo posnemanje – tudi tam so odlični raziskovalci, ki so se izšolali v Evropi in vodijo velike raziskovalne skupine, veliko večje, kot je naša.

Kako je potekal razvoj teh baterijskih sistemov? Javnost je nanje postala pozorna šele z napredkom električnih vozil, ampak to se je najverjetneje že dolgo pripravljalo v raziskovalnih središčih.

Da, ozreti se moramo v 70-a leta 20-ega stoletja, ko so spoznali, da baterije, ki so na voljo, ne zadovoljujejo potreb, predvsem v vesoljski tehnologiji. Takrat se je začelo razmišljati o litijevih baterijah. Pri tem vemo, da je litij najbolj elektronegativni element, se pravi, da imamo lahko najvišjo napetost enega elektrokemijskega člena in s tem veliko več energije kot z navadnimi svinčevimi akumulatorji. Takrat so v zvezi s tem naleteli na velike težave, ki so jih reševali postopoma, leta 1991 pa se je začela komercializacija prvega litijskoionskega akumulatorja, na tržišče ga je dalo podjetje Sony. Takrat je bila energijska gostota približno 0,8 amperske ure – za primerjavo, danes imamo v enaki prostornini že skoraj 3,5 amperske ure. V teh 25-ih letih je šel razvoj naprej, izdelali smo nove materiale, odkrili nove zakonitosti delovanja akumulatorjev, ki jih uporabljamo pri komercialnih izdelkih. Hkrati pa smo dosegli mejnik, ki smo ga predvideli – namreč, da energijske gostote litijsko-ionskih akumulatorjev ne bomo več mogli povečevati. V elektrokemijski reakciji namreč potrebujemo elektrone – pri tem pa nismo vedeli, kako bi povečali gostoto elektronov na določeno maso. Z objavo v reviji Science nam je uspelo pokazati, da se ta gostota lahko poveča na račun kisika, ki je v bateriji shranjen v obliki oksidov, prehodnih kovin – z izkoriščanjem tega redoks člena lahko do 50 odstotkov povečamo energijsko gostoto.

Morda bi na tej točki pojasnili, katere vrste baterij poznamo?

Litijskoionski akumulator je najbolj razširjen. Litijsko-žveplovi počasi prodirajo na tržišče, končuje se obdobje razvoja, nekaj podjetij po svetu jih preizkuša za različne namene (vzdržljivost, starost, varnostni vidik). Poznamo še litijsko-zračne sisteme. Njihova energijska gostota bi omogočila upravljanje letal na daljših, nekaj 1000 kilometrov dolgih razdaljah s stotimi potniki na krovu, vendar je treba celoten sistem še dodelati, da bo lahko deloval zunaj laboratorijskega okolja. Potem imamo zelo pomembno skupino natrijevih akumulatorjev. Ti ponujajo veliko možnosti na področju shranjevanja električne energije iz obnovljivih virov, energijsko gledano, pa so to malce šibkejši akumulatorji, energijska gostota je manjša. Natrij je sicer zelo razširjen element, razmeroma ugoden, zato lahko z njim gradimo velike sisteme. Naslednja skupina so akumulatorji na podlagi magnezija, morda kalcija. Energijska gostota bi bila lahko pri teh večja kot v litijskoionskih akumulatorjih, a je njihov razvoj šele na začetku; je pa nujen zaradi ohranjanja dostopa do surovin. Magnezij je namreč pogost element na Zemlji, dostopen vsem državam, litij pa je precej bolj omejen in geopolitično manj neodvisen. To pa lahko pripelje do novih trenj.

Kaj pa vodik?

Gorivne celice pa so druga zgodba. Poznamo jih iz obdobja med Sonyjevo komercializacijo in razvojem litijsko-ionskih akumulatorjev. V tistem času se je govorilo: »To smo naredili, za avtomobile pa potrebujemo vodik.« Pa vendar se uporaba gorivnih celic še do danes ni razširila. Verjamem pa, da bosta akumulator in gorivna celica v prihodnje složno sodelovala v mobilnosti.

Kako dolge razdalje pa že lahko premagajo avtomobili, v katere so vgrajene take baterije?

To je odvisno od več dejavnikov. Koliko kilometrov lahko prevozite z enim bencinskim tankom? Odvisno od njegove velikosti. Enako je z baterijami. Trenutno lahko z njimi prevozimo več sto kilometrov. Če to preračunamo na energijo, shranjeno v akumulatorju, smo zelo blizu razdalji, ki jo lahko prevozimo s komercialnimi avtomobili.

Pa ste si pred desetimi leti predstavljali takšen napredek?

Ne le pred desetimi, pred 17-imi leti, ko sem se pridružil skupini, sem dobil zamisel, da ne bi delali akumulatorjev za mobitele, ampak za avtomobile. No, to zamisel sem zdaj malo spremenil – zdaj pridobivamo električno energijo kar za letala.

Kako so takrat gledali na vas? Ste veljali za futurista ali so bili vaši cilji realni?

Ne, to so bili čisto realni cilji. Tudi pokojni profesor Janko Jamnik je imel podobna prepričanja.

Kako pa je z letali? Bi torej taki baterijski sistemi res lahko poganjali tudi letala?

To pa ni le vprašanje baterije, ampak celotnega sistema. To je dolgoročen projekt in zato upam, da bom še dejaven, ko ga bodo uresničili.

Kaj bi na tem področju radi videli v prihodnjih 17-ih letih?

Predvsem si želim, da bi imelo delo, ki ga opravlja naša skupina, sadove v komercialnih izdelkih. Pokazal bi rad, da je lahko naše znanje tudi uporabno, ne le objavljeno. To je tudi motivacija, s katero prihajam vsak dan zjutraj v službo in zaradi katere temu posvečam velik del svojega delovnika in tudi življenja.

Kako širite to motivacijo med svojimi sodelavci? Kako si postavljate cilje?

S kolegi iz tujine ni težav, vsi smo kot majhni otroci – smo zelo radovedni, hkrati pa težimo k nečemu novemu in boljšemu. Med mlajšimi sodelavci pa poskušam poiskati tiste, ki vedo, zakaj so prišli sem. Da niso torej prišli k meni zato, da bi pisali članke, temveč da bi se učili in naredili nekaj novega.

Kako dobro pa je o tem poučena javnost?

Včasih se sprašujem, kako lahko Slovenija še obstaja, ko pa je znanje tu tako malo cenjeno. Imamo odlično osnovno šolo. To je tudi razlog, zakaj smo se odločili, da ostanemo v Sloveniji – pozneje pa se to nekako izgubi, pomembnost znanja zvodeni.

Toda ali je znanje o stvareh, s katerimi se ukvarjate, dovolj razširjeno?

Velikokrat srečam sogovornike, ob katerih rečem lahko samo: »Le čevlje sodi naj Kopitar.«

Zdaj pa se, dr. Dominko, vrniva k objavi vaše skupine in skupine iz Francije v reviji Science. Za kaj gre?

Malo sem nakazal že prej: premaknili smo paradigmo miselnosti, da je energijska gostota litijskoionskih akumulatorjev omejena le na elektrone, ki prehajajo iz prehodnih kovin. Pokazali smo, da lahko v posebni kombinaciji pridobimo elektrone tudi iz kisika, ki je vezan v strukturo. S tem smo za 50 odstotkov povečali energijsko gostoto akumulatorja.

Kako se vam je porodila zamisel o tem?

Zamisel je zrasla iz dela drugih raziskovalnih skupin, ki so naletele na težave, a jih niso znale dobro razložiti. V tem času sem vodil virtualno skupino za litijskoionske akumulatorje na evropski ravni, idejo pa sva zasnovala s kolegom iz Francije. Dobila sva sredstva iz virtualnega inštituta, postdoktorski raziskovalec, ki sva mu bila mentorja, pa je opravil večino eksperimentalnega dela.

Koliko časa je preteklo od zamisli do objave?

Po navadi traja leta. Najprej je tu zamisel, potem je treba pridobiti denar, da jo lahko izpelješ, šele nato sledi raziskovanje. Pri nas je vse skupaj trajalo štiri leta. Nekateri drugi projekti zahtevajo še več časa.

Kaj pa to odkritje pomeni za industrijo, za napredek na področju litijskoionskih akumulatorjev?

Industrija to seveda podpira, saj to nakazuje možnosti, kako povečati zmožnosti električnih avtomobilov, avtonomičnost delovanja mobitelov in tako naprej … Predvsem pa s to tehnologijo ne bo treba spreminjati podporne elektronike, ki je v ozadju baterij in ki omogoča njihovo normalno delovanje brez varnostnih tveganj za široko uporabo.

Kako realna je vizija brezogljične družbe?

Zame popolnoma realna, a bo treba spremeniti našo miselnost.

Recimo v letih, desetletjih …?

Tu bi začel z drugega zornega kota … Zagotovo v nekaj desetletjih. Tehnologija bo zanesljivo napredovala, poleg tega pa prihajajo mlajše generacije, ki imajo čisto drugačno miselnost. Gospodje v drugi polovici življenja še moramo čutiti krmilo, pospeške in hrumenje motorja. Mlajšim generacijam pa ni bistvo avtomobil, zanje je bistven prevoz. Zanje ni tako pomembno, ali jih bo s točke A na točko B pripeljalo električno vozilo ali vozilo na gorivne celice ali katero drugo. Nove dimenzije prinašajo Googlovi, Applovi in brezpilotni avtomobili … To bo idealna priložnost za razvoj elektromobilnosti. Moramo pa se zavedati tudi tega, da se naša mesta utapljajo v smogu, dušikovih oksidih, ogljikovem dioksidu … To bo prisililo zakonodajalce, da bodo iz mest izkoreninili star način prevoza, in tedaj se bo promet dokončno elektrificiral.

Kako je s polnilnicami? Tudi to je eden od izzivov – kako omogočiti dovolj ustreznih polnilnic?

To je predvsem vprašanje, ki ga je treba nasloviti na vlado, mestna okrožja. Vedno govorimo, kaj bo prej – ali bo prej več električnih avtomobilov ali električnih polnilnic. Trenutno imamo veliko več polnilnic. A če se bo sprožil zagon elektromobilnosti, bo treba to nadgraditi.

V pogovoru malo prej, preden sem vključila mikrofon, ste mi omenili zanimivo misel s sestanka z zaposlenimi v Airbusu.

Da, na delavnici, ki jo je organiziral Airbus in na kateri sem sodeloval kot strokovnjak za baterije, smo v razpravi, zakaj raje električna letala z baterijami in ne z gorivnimi celicami, ugotovili, da je povečevanje energijske gostote baterij pričakovano. Eden od udeležencev, predstavil se je kot raketni znanstvenik, je ob tem slikovito dejal: »Poglejte, fantje. Pred desetimi leti ste govorili, da energijske gostote ne bomo mogli več povečati, da smo že dosegli maksimum, in zdaj imate z enako maso enkrat več energije na prostorninsko enoto. Se pravi – ne govorite mi, da čez 10 ali 20 let tega ne boste mogli podvojiti ali potrojiti.« Ali celo početveriti, kot zahtevajo.

Čeprav se vam danes najverjetneje še niti ne sanja, kako boste to dosegli?

Nekakšne obrise zamisli imam v glavi, a celotne tehnološke rešitve in vse elektrokemijske reakcije nam še niso znane.

Kakšno vlogo ima pri takih raziskavah industrija? Čutite njen pritisk? Kako sodelujeta raziskovalni sektor in industrija?

Sam se lahko pohvalim s sodelovanjem z industrijo na svetovni ravni. Pri evropskih projektih v zvezi z litijsko-žveplovimi akumulatorji je naš glavni motivator največji evropski proizvajalec baterij Saft. Želijo si to tehnologijo, vedo, da je to prihodnost, ob tem pa nam omogočajo, da vse dosežke iz laboratorijev pripeljemo na njihovo pilotno linijo in preizkusimo, kako delujejo v resnični baterijski celici. Sami s tem pridobivajo znanje, mi pa potrditev, da smo na pravi strani, in tudi informacije o tem, kakšni koraki so potrebni za komercializacijo. Na svetovni ravni pa naj omenim sodelovanje s podjetjem Honda in japonskimi raziskovalci preko nemške izpostave v Offenbachu. Pri tem gre za osnovno raziskovanje področja magnezijevih akumulatorjev. Z njimi si delimo rezultate, pa tudi delovno opremo. S tem jim pomagamo pri razvoju. Zagotovo je vizija večine, da bo prihodnost maloogljična, če ne že čisto brezogljična, zato pa je treba zavihati rokave in narediti nekaj novega.

Avtomobili in akumulatorji so po večini teme v pretežno moški domeni. Je v vaši skupini 14-ih raziskovalcev tudi kaj žensk? Se na tem področju srečujete tudi z ženskami ali je še vedno rezervirano predvsem za moške?

Res je, da je to področje bolj moško, ampak naj omenim, da je moja mlada raziskovalka pred kratkim povila zdravo hčerko. Imam še dve doktorandki, pred kratkim je ena končala doktorsko delo in je še zdaj zaposlena pri nas. Tako da nismo izključno moška skupina.

Akumulatorji zanimajo tudi ženske?

Seveda. Meje med tem, kar zanima ženske in moške, so čedalje bolj zabrisane.

 


08.09.2016

Filmski poklon vesolju

Terrence Malick je na filmskem festivalu v Benetkah predstavil poetični dokumentarec Voyage of Time, ki ga opisujejo kot poklon kozmosu, razodetje časa od njegovega začetka do končnega kolapsa. Film si je v Benetkah ogledala Nina Zagoričnik, ki bo predstavila vtise o novi stvaritvi velikega režiserja. Druga filmska znanstveno-fantastična zgodba je povezana s filmom Stik iz leta 1997, ki prikazuje prvi stik človeštva z zunajzemeljsko civilizacijo. Svetovalec pri filmu je bil ameriški astronom Shest Shostak, ki je tudi aktualni gost podkasta Številke Slavka Jeriča.


30.06.2016

Bi Iskra Delta lahko postala slovenska Nokia?

Bi lahko imeli danes v Sloveniji svojo Nokio, celo Samsung? Morda, računalniško podjetje Iskra Delta je bilo pred 30 leti v svetovnem vrhu razvoja informacijskih tehnologij, sredi Ljubljane so razvijali zametek kitajskega interneta, avtomatizirali so tovarne, izdelovali priljubljena osebna računalnika Partner in Triglav. V nikoli povsem pojasnjenih okoliščinah so, razpeti med interesi politike in tajnih služb ter ob nespretnem ekonomskem vodenju, tik pred osamosvojitvijo propadli. Z nekaterimi vpletenimi smo tehnološka in politična ozadja hitrega vzpona in zatona Iskre Delte raziskovali že pred meseci, oddaja je naletela na velik odziv, zato zgodbo nadaljujemo z nekaterimi novimi pogledi in manj znanimi dejstvi.


23.06.2016

Izgubili smo že približno dve tretjini koral po svetu

"Tako obsežnega beljenja koral še nismo doživeli!" je bil v intervjuju za naš radio jasen eden od vodilnih avstralskih strokovnjakov za koralne greben profesor Terry Hughes, ki korale preučuje že 40 let. Veliki koralni greben je v preteklih mesecih ponekod utrpel več kot polovično izgubo, podobno je s koralami tudi drugod v tropskem pasu. Le eden na tisoč tropskih koralnih grebenov je še zdrav in vitalen, preostale vse bolj načenja segrevanje morja. In tja gremo v naslednjih minutah tudi mi … Prva poletna Frekvenca je štrbunknila v morje in odšla na obisk med najbolj pisane in brleče kraje pod morsko gladino – koralne grebene, ki se vse opazneje spreminjajo v mesta duhov.


16.06.2016

Plešoče žoge

Zakaj žoga brez rotacije tako rekoč “plava” po zraku, kako natančno lahko izračunamo in predvidimo njen let ter na kakšne načine proizvajalci žog manipulirajo z njihovimi lastnostmi, da bi naredili šport čim bolj zanimiv za gledalce?


09.06.2016

Trinajst milijard let dolga pot do Zemlje

Raziskovalna skupina z Univerze v Kaliforniji pod vodstvom profesorice Maruše Bradač je nedavno objavila, da so v globinah vesolja opazili eno od prvih galaksij iz časa, ko je bilo vesolje staro le nekaj sto milijonov let. Medla svetloba je do Zemlje potovala kar 13 milijard let. Si lahko predstavljate, kaj pomeni zreti v vesolje, ko je bilo staro le nekaj sto milijonov let? To je seveda vznemirljivo, saj prve galaksije in z njimi prve zvezde pomenijo, da je vesolje postalo svetel kraj, obenem pa so v zvezdah začeli nastajati tudi kemični elementi, težji od helija, torej tudi ogljik, kisik ali dušik, iz katerih smo nastali tudi mi.


02.06.2016

Šifre in šifriranje

Zaradi njih so se rušili imperiji, izgubljale in dobivale so se vojne, padale so vlade. Danes podpirajo infrastrukturo modernega sveta. Brez njih ne bi bilo računalnikov in interneta. Spletni nakupi, elektronsko bančništvo, telefonski pogovori jih nujno potrebujejo. Prav pridejo tako domačim uporabnikom kot teroristom. Šifre so često spregledani prispevek matematike, a so v resnici njen najpomembnejši izum, brez katerega modernega sveta ne bi bilo. Matematika je izumila nezlomljive šifre, kar prinaša tudi svojevrstne težave.


31.05.2016

Reaktor TRIGA

Na obrobju Ljubljane stoji pravi jedrski reaktor in le peščica jih ve, da ta objekt deluje že 50 let. Predstavljamo reaktor TRIGA.


26.05.2016

Sintetično človeški genom

V začetku maja se je v Bostonu za zaprtimi vrati zbrala druščina znanstvenikov, poslovnežev, etikov in predstavnikov vlade, ki so razpravljali o načrtu, da bi lahko v naslednjih desetih letih izdelali prvi sintetični človeški genom. Projekt se marsikomu zdi sporen, češ da bi lahko na tak način ustvarili ljudi z določenimi lastnostmi, mogoče ljudi, ki so rojeni in vzgojeni za vojake? Kdo bi imel za to dovoljenje, kdo lastništvo nad takimi bitji? Kako blizu temu, da bi lahko sintetizirali pravi človeški genom in kakšna vprašanja to odpira, ugotavljamo ta četrtek ob 12.00 v oddaji Frekvenca X.


19.05.2016

Dobrodošli v antropocenu!

Podobno kot so v zgodovini na globalno stanje našega planeta vplivali izbruhi vulkanov, padci kometov in meteoritov ter gibanje tektonskih plošč, smo danes morda ljudje tisti dejavnik, po katerem bodo geologi prihodnosti označevali sedanje obdobje zgodovine planeta. Zanj se vse bolj uveljavlja izraz antropocen, kazal pa naj bi se tako v geoloških spremembah, nenavadnem obnašanju podnebja in morebitnem šestem množičnem izumiranju vrst. Da živimo v zares izjemnih časih, zdaj ni več vprašanje. Bolj na mestu je premislek, ali v prihodnost antropocena zreti s strahom ali upanjem. Dobrodošlico v antropocenu izrekamo v valovski oddaji Frekvenca X.


12.05.2016

PODCAST: Sporazumvanje živali

Vemo, kako se sporazumevamo ljudje. Imamo številne jezike, govorice, narečja, veliko gestikuliramo, včasih se pačimo … Kako pa je s sporazumevanjem pri naših bližnjih sorodnikih – pri živalih? Podobno kot ljudje, se tudi živali med seboj veliko sporazumevajo. Toda smisel njihove komunikacije nam je velikokrat prikrit. Pa ne le zato, ker mi ne bi imeli “slovarja”, s pomočjo katerega bi lahko prevedli njihove piske, brenčanje, poglede, premike uhljev ali repa in druge signale v človeško govorico. Živali včasih ne moremo razumeti tudi zato, ker se njihova čutila, ki sprejemajo informacije, bistveno razlikujejo od naših.


05.05.2016

Spomin je igra

Poskusite si zapomniti naslednjih deset predmetov: mačka, mleko, zvezda, miza, zgradba, vrtnica, človek, stol, raketa, česen. Kako pa si zapomniti 3000 decimalk števila pi ali kart z enim samim uvidom? Se možgani spominskih rekorderjev razlikujejo od navadnih ali gre le za vztrajnost in dober spominski sistem? Si lahko zapomnimo karkoli in koliko želimo? O tem smo govorili s spominskimi rekorderji, šahistom in doktorjem psihologije.


28.04.2016

Uroš Kuzman

Pogovor z Urošem Kuzmanom, ki je bil v času študija na Fakulteti za matematiko in fiziko med najbolj talentiranimi in delavnimi študenti v svoji generaciji. Danes je doktor matematike in stand-up komik, eden izmed piscev šal pri oddaji komercialne televizije, ki je tudi na slovenski humoristični sceni odprla žar sezono ter član Šaleškega študentskega okteta, ki je predlani posnel na youtubu precejkrat gledano Ubrano jamranje; skladbo z besedilom, spisanim na podlagi izrazov negodovanja Velenjčanov in Velenjčank oz. odgovorov na vprašanje, kaj vas v Velenju najbolj moti? Z Mitjo Pečkom sta se pogovarjala o matematičnih metodah pisanja šal.


21.04.2016

Zvezdne eksplozije, ki so jih videli prvi ljudje

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.


14.04.2016

Vzporedni svetovi

V Frekvenci X tokrat raziskujemo paralelne svetove in druga alternativna dojemanja realnosti. Spoznavamo različne metode preskakovanja iz vsakdanje zaznave v “vzporedne svetove” in ugotavljamo, da smo le toliko na trdnih tleh, kolikor jih fizično (ob)čutimo pod svojimi stopali. Že ob odsotnosti določenih tovrstnih dražljajev se nam namreč lahko odprejo vrata v svet nenavadnega, mističnega.


07.04.2016

Go in umetna inteligenca

Zmaga umetne inteligence nad človekom v igri GO je prelomnica, ki se je bomo nostalgično spominjali, kot se spominjamo Jamesa Watta, bratov Wright ali prvega poslanega elektronskega sporočila. Človeka je premagala, ne da bi jo kdo naučil igrati go. Dobila je vpogled v ogromno odigranih iger, potem je nekaj časa igrala sama proti sebi in se naučila bolje od svetovnega prvaka. Tako hitrega napredka niso pričakovali vsaj še nekaj let. Stroji danes premorejo ogromno moč procesiranja, vse hitreje se učijo sami in človeka izpodrivajo na številnih področjih.


31.03.2016

Skoraj vse o zvoku

Bitje materinega srca je prvi zvok, ki ga sliši človek. Že milijone let nas z najrazličnejšimi zvoki zasipava narava. Vseskozi smo ustvarjali tudi svoje zvoke – od najbolj domačih frekvenc človeškega glasu, umetelnih glasbenih harmonij, do povsem sintetičnih trdih zvokov … in se vse skupaj naučili tudi zapisovati in shranjevati. »Skoraj vse o zvoku« je naslov nove razstave v Tehniškem muzeju v Bistri.


31.03.2016

Roboti ne bodo razumeli politike

"Roboti ne bodo nikoli razumeli politike!" Misel direktorja IJS dr. Jadrana Lenarčiča je dobro izhodišče za realen premislek o robotski prihodnosti. Bo ta humanoidna ali predvsem tehnološka? Bodo roboti res bolj spretni in inteligentni od ljudi? Na Evropskem robotskem forumu 2016 smo se pogovarjali z uglednima gostoma prof. Brunom Sicilianom in dr. Markusom Grebensteinom.


24.03.2016

Psihologija prejemanja nagrad

So nagrade prestiž ali breme? Koliko posamezniku pomeni, da je za svoje delo nagrajen in kako zelo nagrada vpliva na njegovo nadaljnje delo? Je lahko nagrada pozitivna spodbuda za naprej ali je kdaj za posameznika tudi ovira, saj se po prejetju priznanja od njega pričakuje še več? Ker se evforija po smučarskih skokih v Planici še ni polegla, so nas tokrat zanimale športne nagrade, pa ne samo to. Spraševali smo se, kako stresno je tekmovati za stopničke, kako to občuti športnik in kako to pojasnjuje psiholog, v katerem starostnem obdobju najbolj cenimo nagrade oziroma kdaj si jih najbolj želimo?


10.03.2016

Zemlja iz vesolja

Z doktorjem Michaelom Fehringerjem z Evropske vesoljske agencije se bomo pogovarjali o Zemljini težnosti, biomasi in oceanskih tokovih, dr. Matjaž Ličer z Morske biološke postaje Nacionalnega inštituta za biologijo pa bo predstavil, kaj novega smo se naučili o tokovih v našem Jadranu.


10.03.2016

Zemlja iz vesolja

Z doktorjem Michaelom Fehringerjem z Evropske vesoljske agencije se bomo pogovarjali o Zemljini težnosti, biomasi in oceanskih tokovih, dr. Matjaž Ličer z Morske biološke postaje Nacionalnega inštituta za biologijo pa bo predstavil, kaj novega smo se naučili o tokovih v našem Jadranu.


Stran 19 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov