Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


Frekvenca X

690 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


22.06.2017

Potapljanje na dih jemajoče globine

Kako je mogoče, da z enim vdihom človek zdrži pod vodo 11 minut in 35 sekund ali da se le z zmogljivostjo svojih pljuč spusti do globine 214 metrov, kar ustreza višini 65-nadstropne zgradbe? To sta namreč uradna svetovna rekorda. Gosta Samo Jeranko in dr. Ivan Kneževič razložita in opišeta potapljaški refleks, izenačevanje pritiska, iskanje meja za človeško telo in um v ekstremnih globinah.


15.06.2017

45 let Vala 202: Tesla v Mafiji

“Naše vrline in pomanjkljivosti so neločljivo povezane, kot sila in snov. Ko sta ti dve ločeni, človek ne obstaja.” Izumitelj, mislec, genij. Z izjemnimi vrlinami, pa tudi pomanjkljivostmi. Sila in snov v enem. Človek. Razmišljali smo o življenju Nikole Tesle, spoznavali njegove izume in manj znane futuristične zamisli. Teslovemu delu, življenju in duhu dajemo smisel skozi znanstvene, zgodovinske, filozofske, umetniške … vidike. Odpirali smo vprašanja ustvarjalnosti in inovacij, preteklosti in prihodnosti, sile in snovi. Razmerje med tehnologijo, kulturo in izobraževanjem. Bi Nikola Tesla v sodobni družbi še lahko združil silo in snov? Bil človek? Človek prihodnosti? Nesojenemu očetu radia smo posvetili slavnostno oddajo Frekvenca X ob 45-letnici Vala 202. V Kavarni Mafija smo gostili Janeza Dovča (fizik in glasbenik) in Andreja Detelo (inovator in poznavalec Teslovega življenja in dela). Iz Sarajeva se je posebej za oddajo Frekvenca X oglasil filmski in gledališki Tesla Rade Šerbedžija. Za uglasbitev Nikole Tesle sta poskrbela duet Silence. Spektakularen večer je uvedel Janez Dovč, ki je na Teslovo tuljavo zaigral Tako je govoril Zaratustra Richarda Straussa. Oddajo sta vodila Luka Hvalc in Maruša Kerec.


12.06.2017

Mija Škrabec Arbanas: Verjamem v avtentični radio

Mija Škrabec Arbanas je legenda Vala 202. Bila je zraven že poleti 1972, ko se je na srednjevalovni dolžini 202 prvič zaslišal drugi program nacionalnega radia. V več kot 40-letni radijski karieri je Mija kot terenska reporterka prekrižarila Slovenijo, med drugim je bila novinarka in voditeljica pogovorov na 18. vzporedniku, soavtorica Frekvence X in nedeljskih intervjujev z ljudmi, katerih zgodbe ostrijo in bistrijo pogled na svet. Varuhinja lika in dela Marka Zorka, dobitnica nagrade za življenjski prispevek k razvoju slovenskega novinarstva. Radio še vedno posluša tudi kot upokojenka, le za malenkost tišje je nastavljen kot nekoč. Val 202 je še vedno njen program, čeprav ga posluša manj. Redno spremlja nedeljske goste, tudi oddajo 18. vzporednik, pa Zapise iz močvirja, Frekvenco X … Tudi podkaste, “ki so nova možnost, a vseeno se zdi, da ni več avtentičnega radia, vsak je že lahko novinar in urednik. Vedno sem verjela v radio in vanj še vedno verjamem. Ampak seveda v avtentičen radio, ki se dela v živo in mora imeti vsebino. Danes je morda že preveč manipulacije, na račun kratkosti in dinamike včasih trpijo vsebine. Vedno moraš misliti na to, da narediš zanimivo, a hkrati preverjeno in verodostojno oddajo. Radio je obstal zaradi vsebine.” V praznični različici podkasta Frekvence X ob 45-letnici Vala 202 se z Mijo Škrabec Arbanas pogovarja Luka Hvalc.


08.06.2017

Skrivnost govoreče mize

Na neki odročni kmetiji blizu Prevalj na Koroškem imajo staro leseno mizo, ki naj bi imela nadnaravne sposobnosti. Po pričevanjih mnogih, ki so jo obiskali, se namreč dviga od tal in skozi specifičen komunikacijski kod odgovarja na njihova vprašanja, pri čemer je menda zelo natančna in "ve" tudi nekatere zelo osebne stvari o svojih spraševalcih. Je koroška miza res dokaz o obstoju paranormalnega ali lahko znanost postreže z racionalno razlago o tem, kako in zakaj seanse s tako imenovanimi govorečimi mizami delujejo? O tem smo debatirali z nevrobiologom prof. dr. Marko Kreftom in iluzionistom Sam Sebastianom, ki menita, da se v pogovorih z mizami pravzaprav pogovarjamo sami s seboj, antropologinjo Nino Šisernik, ki je v svojem diplomskem delu zbrala pričevanja udeležencev seans z domnevno jasnovidnimi mizami, seveda pa smo šli kontroverzno mizo tudi sami preizkusit.


01.06.2017

Vznemirljivost astronomije in junijskega neba

Evropski južni observatorij v Čilu gradi veliki teleskop. Ko bo ta čez 7 let začel z delom, bo s premerom 39 metrov daleč največji teleskop na svetu. Profesionalni in laični astronomi pričakujejo številna nova zanimiva in tudi nepričakovana odkritja. Vznemirljivost astronomije raziskujemo s prof. Paolom Padovanijem, vodjo evropskega virtualnega teleskopa in s prof. Tomažem Zwittrom, ki nas odpelje med zanimivosti junijskega neba.


25.05.2017

Vulkan je ventil med notranjostjo in zunanjostjo Zemlje

Za nekatere so strah in trepet, drugi si življenja brez njih ne predstavljajo. Kjer stojijo, so tla zelo rodovitna, so pa tudi bolj ranljiva in se pogosto tresejo. Na Zemlji je skoraj 1500 delujočih vulkanov, nam najbližji in tudi največji dejavni vulkan v Evropi je Etna v Italiji na Siciliji, ki se je pred kratkim spet prebudil, a, kot bomo ugotavljali, ni to ni nič presenetljivega. Gibali se bomo med zemljo in zrakom … ali bolje med kamninami in tekočinami … v družbi dveh naravnih in dveh eksperimentalnih vulkanov. Pridružite se nam na poti v globine zemeljske površine. Odgovore smo iskali skupaj z geofizikom dr. Michaelom Polandom, ki dela v ameriškem nacionalnem parku Yellowstone, vulkanologom Stefanom Branco, ki na Siciliji spremlja Etno, izvedli pa smo še simulaciji izbruha vulkanov s fizikom Luko Vidicem v Hiši eksperimentov v Ljubljani.


18.05.2017

Čudežne škarje genetike

V genetiki se z bliskovitim korakom odvija revolucija, ki bi lahko zelo vplivala na naša življenja in našo prihodnost. Zastavonoša te revolucije je nova tehnologija genetskega inženiringa, s katero lahko znanstveniki na relativno enostaven način načrtno spreminjajo gensko zasnovo živih bitij, tudi ljudi. Tehnologija se imenuje CRISPR, raziskovalci pa jo opisujejo s superlativi, kot so “neverjetna, osupljiva in daljnosežna”. Napredek na tem področju pa ima tudi senčno plat: lahko pripelje do nove elitne rase, otrok po načrtu in kako regulirati frankensteinovske eksperimente za zaprtimi laboratorijskimi vrati? Revolucionarna genetika prihodnosti – da, ampak kako daleč in pod kakšnimi pravili? O tem smo pred dnevi z gostoma dr. Romanom Jeralo in dr. Igorjem Pribcem razpravljali v prvi terenski Frekvenci X v Kavarni Mafija, povzemamo najbolj zanimive dele.


11.05.2017

Logične zmote

“Veliko ljudi meni, da je slovensko zdravstvo slabo. Torej tudi je slabo.” Ali pa: “Kako lahko kaj veš o tem, če pa sploh nisi dokončal izobrazbe!” Ti dve povedi skrivata v sebi tipični zmoti v argumentaciji. Pa ste ju tudi spregledali? Logika pozna malo morje tovrstnih zmot, povsem nevede jih na veliko uporabljamo in jim nasedamo v javnem diskurzu, polne so jih parlamentarne razprave in medijske objave. Nekateri jih uporabljajo, da z njimi svoje šibke argumente spremenijo v močne, spet drugi jim naivno in nekritično nasedamo in sledimo. Kaj so zmote v argumentaciji, kako jim stopiti na rep in jih prepoznati in kje v javnem diskurzu so se najbolj trdovratno razrasle… Gosta: Filozofa dr. Boris Vezjak in dr. Vojko Strahovnik.


04.05.2017

Podatkovna genialka Marinka Žitnik

Na obisk v tokratno Frekvenco prihaja računalniška genialka, dekle, ki je tekom svoje študijske poti rokovalo samo in izključno z deseticami. Podoktorska študentka na Stanfordu stavi na področji bioinformatike in računske biologije, ki po njenem na široko odpirata pot v personalizirano medicino prihodnosti. Pri svojih 27 letih je še vedno kot otrok radovedno nenasitna za vsakršnim novim znanjem, pri čemer delo enači s prostim časom in svoje profesionalno poslanstvo s sanjami.


20.04.2017

Kot da bi iskal iglo na drugem koncu vesolja!

Skupina slovenske raziskovalke odkrila eno od najstarejših galaksij, ki je posebna zato, ker je navadna.


13.04.2017

Doma imamo veliko koristne kemije

O kemiji navadno govorimo slabšalno s prizvokom škodljivega in strupenega. A dejansko se ji ne moremo izogniti. V tokratni Frekvenci X smo ugotavljali, koliko ‘kemije’ imamo doma – veliko več, kot si mislite. In v resnici nam prej koristi kot škoduje.


06.04.2017

Še levi se bojijo nadzora

Po uvedbi sektorskega merjenja na štajerski avtocesti se je povprečna hitrost vožnje skozi trojanske predore zmanjšala skoraj za 10 km/h. Nadzor deluje. Raziskave in praksa potrjujejo, da se ljudje bistveno lepše vedemo, ko vemo ali vsaj slutimo, da nas nekdo opazuje. Nadzor deluje. V Afriki so eksperimentalno na zadnjice krav naslikali oči, levi in drugi plenilci zaradi občutka nadzora ne napadajo goveda. Nadzor deluje. Raziskujemo, kakšni so koncepti formalnega in neformalnega nadzora, kako je z njegovo učinkovitostjo, kje so meje nadzora in kdaj se ljudje na bolj ali manj opazne metode nadzora tudi požvižgamo. Sogovorniki: -Dr. Neil Jordan, biolog in vedenjski ekolog -Dr. Aleš Završnik, Inštitut za kriminologijo na Pravni fakulteti v Ljubljani -Robert Vehovec, višji policijski inšpektor


30.03.2017

Komu verjeti

Kako je mogoče, da se v svetu, v katerem še nikoli ni bilo dostopnih toliko informacij in možnosti njihovega preverjanja, razraščata praznoverje in lahkovernost? Kako se uspe neresnicam s tako lahkoto prikrasti v ospredje javne pozornosti in v verodostojnosti vehementno izzivati znanost in medicino? Kako in zakaj to stanje vzdržuje medijska težnja po uravnoteženem poročanju? V iskanju resnice pogosto iščemo avtoriteto, ki jo imamo za verodostojno. Kdo so te avtoritete in kaj jih naredi verodostojne? In zakaj so neresnice lahko tudi nevarne? To so bila izhodiščna vprašanja otvoritvenega večera pomladanskega cikla projekta Znanost na cesti. Razpravljalci so v ZRC SAZU v Ljubljani razgrnili nekaj ključnih vprašanj o tem, komu verjeti. Zbrali smo mnenja treh strokovnjakov: fizika in filozofa dr. Matjaža Ličerja, eksperta za merjenje javnega mnenja Andraža Zorka in zdravnika Erika Breclja.


23.03.2017

Kot da bi skočil z 11. nadstropja!

Fizika sil, ki so udeležene pri uporabi varnostnega pasu v vozilu, je brezkompromisno jasna – sile, ki delujejo na telo v hipnem primežu prometne nesreče, se z njim igrajo kot z lutko, sploh če ni pripeto z varnostnim pasom. Frekvenca X preverja sile, ki so v ozadju (ne)uporabe varnostnega pasu. Privežite se z nami!


16.03.2017

Krizni novi svet

Ste v osebni krizi? Imate občutek, da so v krizi ljudje in družba okoli vas? Kaj pa država, Evropska unija, globalni svet? Vsi se soočamo z vsakodnevnimi bolj ali manj velikimi skrbmi, v naših življenjih se zrcalijo širše družbene krize, zaradi nespametnih finančnih potez je v krizi gospodarstvo, vojne in konflikti za seboj potegnejo begunske krize. Vse to vpliva na naše možgane, a za reševanje kriznih situacij so hkrati odgovorni prav naši možgani. Kako se odzvati v kriznih situacijah, lahko iz kriz izidemo kot zmagovalci, so krize normalen in nujen del življenja? Gostje: Hana Hawlina, vodja Tedna možganov; David Gosar, klinični psiholog; Robi Ribič, policijski pogajalec; Sandi Slodej, pilot in vodja usposabljanja posadk.


09.03.2017

Kako staro je življenje

Pred tednom je v znanstveni reviji Nature izšla odmevna objava o tem, da bi lahko življenje na Zemlji obstajalo do tudi pred 4,2 milijarde let, kar je komaj nekaj 100 milijonov let po nastanku našega planeta! Če bo odkritje potrjeno, bo to po mnenju strokovnjakov vsekakor zatreslo dozdajšnje vedenje o vzniku življenja na našem planetu. A ne le to – kaj bi to lahko pomenilo tudi z vidika nastanka življenja drugod v našem Osončju? Za Mars in Venero je namreč znano, da naj bi bila takrat glede na atmosfero in vodo veliko prijaznejši okolji … Frekvenca X je med drugim obiskala tudi največjo zbirko ekstremofilnih gliv na svetu, imajo jo kar na obrobju Ljubljane!


02.03.2017

Zapleteno rojevanje vremenske napovedi

Da nastane vremenska napoved, ni dovolj le pogled v nebo. Za sodobne vremenske napovedi je treba dobiti velikanske količine podatkov. Te potem analizirajo izjemno zmogljivi računalniki, ki lahko le v pičlih nekaj sekundah postrežejo s prvimi oprijemljivimi podatki in vremenskimi slikami, te pa nato v vsem razumljivo govorico prevedejo dežurni prognostiki. Po tej zapleteni poti rojevanja vremenske napovedi se danes podaja Frekvenca X.


23.02.2017

Privlačnost nasilja na zaslonih

Nasilje v tradicionalnih in novih medijih je vseprisotno. O tem, da vzbuja pozornost, ni dvoma. A kakšni so v resnici naši odzivi na travmatične dogodke, ki jih vidimo na zaslonu? Kako je potreba po ogledu nasilnega dejanja povezana s človeško zmožnostjo predvidevanja prihodnosti? Zakaj sploh gledamo nasilne in krvave filme? Se s prihodom spletnih družabnih omrežij res postavljajo nova pravila igre in kako spletna anonimnost spreminja vzorce našega vedenja? Med iskanjem vzrokov za privlačnost nasilja na zaslonu gre Frekvenca X med krdelo levov, v gladiatorsko areno, hollywoodske studie z začetka 20. stoletja in na družabna omrežja danes vseobsegajočega svetovnega spleta. Gosti: Aleksander Zadel, psiholog Dr. Rajko Muršič, antropolog, Filozofska fakulteta UL Dr. Peter Stanković, kulturolog, Fakulteta za družbene vede UL


16.02.2017

Od kod je na Zemljo prišla voda?

V teh dneh, ko z neba pada voda zdaj v kapljicah zdaj v snežinkah, se bomo v Frekvenci X vprašali, od kod neki se je vsa ta voda sploh vzela. Da je Zemlja Modri planet, torej polna vode, vira življenja, se zdi samoumevno. Pa ni čisto tako. Če je vir življenja voda, kaj je vir vode?


09.02.2017

Večno mladi in zdravi?

Starejši si, boljši si. Tako kot vino. Kje pa, tole že dolgo ne velja več. Če je sploh kdaj veljalo. Ljudje si želimo biti večno mladi že desetletja. Kaj desetletja, stoletja, tisočletja. Že Grki so imeli boginjo mladosti Hebo, ki je stregla nektar bogovom na Olimpu in imela moč, da je nekomu podelila večno mladost. Iskanje recepta čudežnega napitka, ki bi nas odrešil muk staranja, se seveda ni posrečilo v obdobju našega življenja, mitološke zgodbe so sicer zgodbe, realnost pa je napredna medicina, ki je vse bliže tako imenovanemu vrelcu mladosti.


Stran 17 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov