Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


Frekvenca X

690 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


08.09.2016

Filmski poklon vesolju

Terrence Malick je na filmskem festivalu v Benetkah predstavil poetični dokumentarec Voyage of Time, ki ga opisujejo kot poklon kozmosu, razodetje časa od njegovega začetka do končnega kolapsa. Film si je v Benetkah ogledala Nina Zagoričnik, ki bo predstavila vtise o novi stvaritvi velikega režiserja. Druga filmska znanstveno-fantastična zgodba je povezana s filmom Stik iz leta 1997, ki prikazuje prvi stik človeštva z zunajzemeljsko civilizacijo. Svetovalec pri filmu je bil ameriški astronom Shest Shostak, ki je tudi aktualni gost podkasta Številke Slavka Jeriča.


30.06.2016

Bi Iskra Delta lahko postala slovenska Nokia?

Bi lahko imeli danes v Sloveniji svojo Nokio, celo Samsung? Morda, računalniško podjetje Iskra Delta je bilo pred 30 leti v svetovnem vrhu razvoja informacijskih tehnologij, sredi Ljubljane so razvijali zametek kitajskega interneta, avtomatizirali so tovarne, izdelovali priljubljena osebna računalnika Partner in Triglav. V nikoli povsem pojasnjenih okoliščinah so, razpeti med interesi politike in tajnih služb ter ob nespretnem ekonomskem vodenju, tik pred osamosvojitvijo propadli. Z nekaterimi vpletenimi smo tehnološka in politična ozadja hitrega vzpona in zatona Iskre Delte raziskovali že pred meseci, oddaja je naletela na velik odziv, zato zgodbo nadaljujemo z nekaterimi novimi pogledi in manj znanimi dejstvi.


23.06.2016

Izgubili smo že približno dve tretjini koral po svetu

"Tako obsežnega beljenja koral še nismo doživeli!" je bil v intervjuju za naš radio jasen eden od vodilnih avstralskih strokovnjakov za koralne greben profesor Terry Hughes, ki korale preučuje že 40 let. Veliki koralni greben je v preteklih mesecih ponekod utrpel več kot polovično izgubo, podobno je s koralami tudi drugod v tropskem pasu. Le eden na tisoč tropskih koralnih grebenov je še zdrav in vitalen, preostale vse bolj načenja segrevanje morja. In tja gremo v naslednjih minutah tudi mi … Prva poletna Frekvenca je štrbunknila v morje in odšla na obisk med najbolj pisane in brleče kraje pod morsko gladino – koralne grebene, ki se vse opazneje spreminjajo v mesta duhov.


16.06.2016

Plešoče žoge

Zakaj žoga brez rotacije tako rekoč “plava” po zraku, kako natančno lahko izračunamo in predvidimo njen let ter na kakšne načine proizvajalci žog manipulirajo z njihovimi lastnostmi, da bi naredili šport čim bolj zanimiv za gledalce?


09.06.2016

Trinajst milijard let dolga pot do Zemlje

Raziskovalna skupina z Univerze v Kaliforniji pod vodstvom profesorice Maruše Bradač je nedavno objavila, da so v globinah vesolja opazili eno od prvih galaksij iz časa, ko je bilo vesolje staro le nekaj sto milijonov let. Medla svetloba je do Zemlje potovala kar 13 milijard let. Si lahko predstavljate, kaj pomeni zreti v vesolje, ko je bilo staro le nekaj sto milijonov let? To je seveda vznemirljivo, saj prve galaksije in z njimi prve zvezde pomenijo, da je vesolje postalo svetel kraj, obenem pa so v zvezdah začeli nastajati tudi kemični elementi, težji od helija, torej tudi ogljik, kisik ali dušik, iz katerih smo nastali tudi mi.


02.06.2016

Šifre in šifriranje

Zaradi njih so se rušili imperiji, izgubljale in dobivale so se vojne, padale so vlade. Danes podpirajo infrastrukturo modernega sveta. Brez njih ne bi bilo računalnikov in interneta. Spletni nakupi, elektronsko bančništvo, telefonski pogovori jih nujno potrebujejo. Prav pridejo tako domačim uporabnikom kot teroristom. Šifre so često spregledani prispevek matematike, a so v resnici njen najpomembnejši izum, brez katerega modernega sveta ne bi bilo. Matematika je izumila nezlomljive šifre, kar prinaša tudi svojevrstne težave.


31.05.2016

Reaktor TRIGA

Na obrobju Ljubljane stoji pravi jedrski reaktor in le peščica jih ve, da ta objekt deluje že 50 let. Predstavljamo reaktor TRIGA.


26.05.2016

Sintetično človeški genom

V začetku maja se je v Bostonu za zaprtimi vrati zbrala druščina znanstvenikov, poslovnežev, etikov in predstavnikov vlade, ki so razpravljali o načrtu, da bi lahko v naslednjih desetih letih izdelali prvi sintetični človeški genom. Projekt se marsikomu zdi sporen, češ da bi lahko na tak način ustvarili ljudi z določenimi lastnostmi, mogoče ljudi, ki so rojeni in vzgojeni za vojake? Kdo bi imel za to dovoljenje, kdo lastništvo nad takimi bitji? Kako blizu temu, da bi lahko sintetizirali pravi človeški genom in kakšna vprašanja to odpira, ugotavljamo ta četrtek ob 12.00 v oddaji Frekvenca X.


19.05.2016

Dobrodošli v antropocenu!

Podobno kot so v zgodovini na globalno stanje našega planeta vplivali izbruhi vulkanov, padci kometov in meteoritov ter gibanje tektonskih plošč, smo danes morda ljudje tisti dejavnik, po katerem bodo geologi prihodnosti označevali sedanje obdobje zgodovine planeta. Zanj se vse bolj uveljavlja izraz antropocen, kazal pa naj bi se tako v geoloških spremembah, nenavadnem obnašanju podnebja in morebitnem šestem množičnem izumiranju vrst. Da živimo v zares izjemnih časih, zdaj ni več vprašanje. Bolj na mestu je premislek, ali v prihodnost antropocena zreti s strahom ali upanjem. Dobrodošlico v antropocenu izrekamo v valovski oddaji Frekvenca X.


12.05.2016

PODCAST: Sporazumvanje živali

Vemo, kako se sporazumevamo ljudje. Imamo številne jezike, govorice, narečja, veliko gestikuliramo, včasih se pačimo … Kako pa je s sporazumevanjem pri naših bližnjih sorodnikih – pri živalih? Podobno kot ljudje, se tudi živali med seboj veliko sporazumevajo. Toda smisel njihove komunikacije nam je velikokrat prikrit. Pa ne le zato, ker mi ne bi imeli “slovarja”, s pomočjo katerega bi lahko prevedli njihove piske, brenčanje, poglede, premike uhljev ali repa in druge signale v človeško govorico. Živali včasih ne moremo razumeti tudi zato, ker se njihova čutila, ki sprejemajo informacije, bistveno razlikujejo od naših.


05.05.2016

Spomin je igra

Poskusite si zapomniti naslednjih deset predmetov: mačka, mleko, zvezda, miza, zgradba, vrtnica, človek, stol, raketa, česen. Kako pa si zapomniti 3000 decimalk števila pi ali kart z enim samim uvidom? Se možgani spominskih rekorderjev razlikujejo od navadnih ali gre le za vztrajnost in dober spominski sistem? Si lahko zapomnimo karkoli in koliko želimo? O tem smo govorili s spominskimi rekorderji, šahistom in doktorjem psihologije.


28.04.2016

Uroš Kuzman

Pogovor z Urošem Kuzmanom, ki je bil v času študija na Fakulteti za matematiko in fiziko med najbolj talentiranimi in delavnimi študenti v svoji generaciji. Danes je doktor matematike in stand-up komik, eden izmed piscev šal pri oddaji komercialne televizije, ki je tudi na slovenski humoristični sceni odprla žar sezono ter član Šaleškega študentskega okteta, ki je predlani posnel na youtubu precejkrat gledano Ubrano jamranje; skladbo z besedilom, spisanim na podlagi izrazov negodovanja Velenjčanov in Velenjčank oz. odgovorov na vprašanje, kaj vas v Velenju najbolj moti? Z Mitjo Pečkom sta se pogovarjala o matematičnih metodah pisanja šal.


14.04.2016

Vzporedni svetovi

V Frekvenci X tokrat raziskujemo paralelne svetove in druga alternativna dojemanja realnosti. Spoznavamo različne metode preskakovanja iz vsakdanje zaznave v “vzporedne svetove” in ugotavljamo, da smo le toliko na trdnih tleh, kolikor jih fizično (ob)čutimo pod svojimi stopali. Že ob odsotnosti določenih tovrstnih dražljajev se nam namreč lahko odprejo vrata v svet nenavadnega, mističnega.


07.04.2016

Go in umetna inteligenca

Zmaga umetne inteligence nad človekom v igri GO je prelomnica, ki se je bomo nostalgično spominjali, kot se spominjamo Jamesa Watta, bratov Wright ali prvega poslanega elektronskega sporočila. Človeka je premagala, ne da bi jo kdo naučil igrati go. Dobila je vpogled v ogromno odigranih iger, potem je nekaj časa igrala sama proti sebi in se naučila bolje od svetovnega prvaka. Tako hitrega napredka niso pričakovali vsaj še nekaj let. Stroji danes premorejo ogromno moč procesiranja, vse hitreje se učijo sami in človeka izpodrivajo na številnih področjih.


31.03.2016

Skoraj vse o zvoku

Bitje materinega srca je prvi zvok, ki ga sliši človek. Že milijone let nas z najrazličnejšimi zvoki zasipava narava. Vseskozi smo ustvarjali tudi svoje zvoke – od najbolj domačih frekvenc človeškega glasu, umetelnih glasbenih harmonij, do povsem sintetičnih trdih zvokov … in se vse skupaj naučili tudi zapisovati in shranjevati. »Skoraj vse o zvoku« je naslov nove razstave v Tehniškem muzeju v Bistri.


31.03.2016

Roboti ne bodo razumeli politike

"Roboti ne bodo nikoli razumeli politike!" Misel direktorja IJS dr. Jadrana Lenarčiča je dobro izhodišče za realen premislek o robotski prihodnosti. Bo ta humanoidna ali predvsem tehnološka? Bodo roboti res bolj spretni in inteligentni od ljudi? Na Evropskem robotskem forumu 2016 smo se pogovarjali z uglednima gostoma prof. Brunom Sicilianom in dr. Markusom Grebensteinom.


24.03.2016

Psihologija prejemanja nagrad

So nagrade prestiž ali breme? Koliko posamezniku pomeni, da je za svoje delo nagrajen in kako zelo nagrada vpliva na njegovo nadaljnje delo? Je lahko nagrada pozitivna spodbuda za naprej ali je kdaj za posameznika tudi ovira, saj se po prejetju priznanja od njega pričakuje še več? Ker se evforija po smučarskih skokih v Planici še ni polegla, so nas tokrat zanimale športne nagrade, pa ne samo to. Spraševali smo se, kako stresno je tekmovati za stopničke, kako to občuti športnik in kako to pojasnjuje psiholog, v katerem starostnem obdobju najbolj cenimo nagrade oziroma kdaj si jih najbolj želimo?


10.03.2016

Zemlja iz vesolja

Z doktorjem Michaelom Fehringerjem z Evropske vesoljske agencije se bomo pogovarjali o Zemljini težnosti, biomasi in oceanskih tokovih, dr. Matjaž Ličer z Morske biološke postaje Nacionalnega inštituta za biologijo pa bo predstavil, kaj novega smo se naučili o tokovih v našem Jadranu.


10.03.2016

Zemlja iz vesolja

Z doktorjem Michaelom Fehringerjem z Evropske vesoljske agencije se bomo pogovarjali o Zemljini težnosti, biomasi in oceanskih tokovih, dr. Matjaž Ličer z Morske biološke postaje Nacionalnega inštituta za biologijo pa bo predstavil, kaj novega smo se naučili o tokovih v našem Jadranu.


Stran 19 od 35
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov